Leveraging genome-wide association studies to better understand the etiology of cancers

被引:0
|
作者
Sonehara, Kyuto [1 ,2 ,3 ]
Okada, Yukinori [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Genome Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[2] Osaka Univ, Grad Sch Med, Dept Stat Genet, Suita, Japan
[3] RIKEN Ctr Integrat Med Sci, Lab Syst Genet, Yokohama, Japan
[4] Osaka Univ, Immunol Frontier Res Ctr WPI IFReC, Lab Stat Immunol, Suita, Japan
[5] Osaka Univ, Premium Res Inst Human Metaverse Med WPI PRIMe, Suita, Japan
关键词
eQTL; genetic correlation; genome-wide association study; polygenic risk score; transcriptome-wide association study; CIS-EQTL ANALYSIS; SUSCEPTIBILITY GENES; BREAST-CANCER; POLYGENIC RISK; CANDIDATE; HERITABILITY; LOCALIZATION; PREDICTION; LANDSCAPE; PROJECT;
D O I
10.1111/cas.16402
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Genome-wide association studies (GWAS) statistically assess the association between tens of millions of genetic variants in the whole genome and a phenotype of interest. Genome-wide association studies enable the elucidation of polygenic inheritance of cancer, in which myriad low-penetrance genetic variants collectively contribute to a substantial proportion of the heritable susceptibility. In addition to the robust genotype-phenotype associations provided by GWAS, combining GWAS data with functional genomic datasets or sophisticated statistical genetic methods unlocks deeper insights. Integrating genotype and molecular phenotyping data facilitates functional characterization of GWAS association signals through molecular quantitative trait loci mapping and transcriptome-wide association studies. Furthermore, aggregating genome-wide polygenic signals, including subthreshold associations, enables one to estimate genetic correlations across diverse phenotypes and helps in clinical risk predictions by evaluating polygenic risk scores. In this review, we begin by summarizing the rationale for GWAS of cancer, introduce recent methodological updates in the GWAS-derived downstream analyses, and demonstrate their applications to GWAS of cancers.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Genome-wide association studies in Plasmodiumspecies
    Bridget Penman
    Caroline Buckee
    Sunetra Gupta
    Sean Nee
    BMC Biology, 8
  • [42] Trio Genome-Wide Association Studies
    Badini, Isabella
    Davies, Neil
    BEHAVIOR GENETICS, 2024, 54 (06) : 548 - 549
  • [43] Problems with genome-wide association studies
    Williams, Scott M.
    Canter, Jeffrey A.
    Crawford, Dana C.
    Moore, Jason H.
    Ritchie, Marylyn D.
    Haines, Jonathan L.
    SCIENCE, 2007, 316 (5833) : 1841 - 1842
  • [44] Genome-wide association studies in mice
    Flint, Jonathan
    Eskin, Eleazar
    NATURE REVIEWS GENETICS, 2012, 13 (11) : 807 - 817
  • [45] Leveraging pleiotropy for joint analysis of genome-wide association studies with per trait interpretations
    Taraszka, Kodi
    Zaitlen, Noah
    Eskin, Eleazar
    PLOS GENETICS, 2022, 18 (11):
  • [46] Replicating genome-wide association studies
    Kuniholm, Mark H.
    SCIENCE, 2007, 318 (5849) : 390 - 390
  • [47] Genome-Wide Association Studies in Hepatology
    Weber, S.
    Gruenhage, F.
    Hall, R.
    Lammert, F.
    ZEITSCHRIFT FUR GASTROENTEROLOGIE, 2010, 48 (01): : 56 - 64
  • [48] Genome-wide association studies in mice
    Jonathan Flint
    Eleazar Eskin
    Nature Reviews Genetics, 2012, 13 : 807 - 817
  • [49] Successes of Genome-wide Association Studies
    Klein, Robert J.
    Xu, Xing
    Mukherjee, Semanti
    Willis, Jason
    Hayes, James
    CELL, 2010, 142 (03) : 350 - 351
  • [50] Genome-wide association studies with metabolomics
    Jerzy Adamski
    Genome Medicine, 4