Leveraging genome-wide association studies to better understand the etiology of cancers

被引:0
|
作者
Sonehara, Kyuto [1 ,2 ,3 ]
Okada, Yukinori [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Tokyo, Grad Sch Med, Dept Genome Informat, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1130033, Japan
[2] Osaka Univ, Grad Sch Med, Dept Stat Genet, Suita, Japan
[3] RIKEN Ctr Integrat Med Sci, Lab Syst Genet, Yokohama, Japan
[4] Osaka Univ, Immunol Frontier Res Ctr WPI IFReC, Lab Stat Immunol, Suita, Japan
[5] Osaka Univ, Premium Res Inst Human Metaverse Med WPI PRIMe, Suita, Japan
关键词
eQTL; genetic correlation; genome-wide association study; polygenic risk score; transcriptome-wide association study; CIS-EQTL ANALYSIS; SUSCEPTIBILITY GENES; BREAST-CANCER; POLYGENIC RISK; CANDIDATE; HERITABILITY; LOCALIZATION; PREDICTION; LANDSCAPE; PROJECT;
D O I
10.1111/cas.16402
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Genome-wide association studies (GWAS) statistically assess the association between tens of millions of genetic variants in the whole genome and a phenotype of interest. Genome-wide association studies enable the elucidation of polygenic inheritance of cancer, in which myriad low-penetrance genetic variants collectively contribute to a substantial proportion of the heritable susceptibility. In addition to the robust genotype-phenotype associations provided by GWAS, combining GWAS data with functional genomic datasets or sophisticated statistical genetic methods unlocks deeper insights. Integrating genotype and molecular phenotyping data facilitates functional characterization of GWAS association signals through molecular quantitative trait loci mapping and transcriptome-wide association studies. Furthermore, aggregating genome-wide polygenic signals, including subthreshold associations, enables one to estimate genetic correlations across diverse phenotypes and helps in clinical risk predictions by evaluating polygenic risk scores. In this review, we begin by summarizing the rationale for GWAS of cancer, introduce recent methodological updates in the GWAS-derived downstream analyses, and demonstrate their applications to GWAS of cancers.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The road to genome-wide association studies
    Kruglyak, Leonid
    NATURE REVIEWS GENETICS, 2008, 9 (04) : 314 - 318
  • [32] Genome-wide association studies in ADHD
    Barbara Franke
    Benjamin M. Neale
    Stephen V. Faraone
    Human Genetics, 2009, 126 : 13 - 50
  • [33] Genome-Wide Association Studies of Cancer
    Stadler, Zsofia K.
    Thom, Peter
    Robson, Mark E.
    Weitzel, Jeffrey N.
    Kauff, Noah D.
    Hurley, Karen E.
    Devlin, Vincent
    Gold, Bert
    Klein, Robert J.
    Offit, Kenneth
    JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (27) : 4255 - 4267
  • [34] Genome-wide association studies in pharmacogenomics
    Daly, Ann K.
    NATURE REVIEWS GENETICS, 2010, 11 (04) : 241 - 246
  • [35] Genome-Wide Association Studies in Atherosclerosis
    S. Sivapalaratnam
    M. M. Motazacker
    S. Maiwald
    G. K. Hovingh
    J. J. P. Kastelein
    M. Levi
    M. D. Trip
    G. M. Dallinga-Thie
    Current Atherosclerosis Reports, 2011, 13 : 225 - 232
  • [36] The road to genome-wide association studies
    Leonid Kruglyak
    Nature Reviews Genetics, 2008, 9 : 314 - 318
  • [37] Genome-wide association studies in atherothrombosis
    Lotta, Luca Andrea
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2010, 21 (02) : 74 - 78
  • [38] Genome-Wide Association Studies in Glioma
    Kinnersley, Ben
    Houlston, Richard S.
    Bondy, Melissa L.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2018, 27 (04) : 418 - 428
  • [39] Human Genome-wide association studies
    Keith, Tim
    GENETIC ENGINEERING NEWS, 2007, 27 (02): : 22 - 22
  • [40] Genome-wide association studies in cancer
    Easton, Douglas F.
    Eeles, Rosalind A.
    HUMAN MOLECULAR GENETICS, 2008, 17 : R109 - R115