The Spontaneous and Tunable Exchange Bias in above Room-Temperature Van der Waals Magnet

被引:0
|
作者
Du, Jiantao [1 ]
He, Kun [2 ]
Chen, Junyang [3 ]
He, Yangkun [1 ]
He, Miao [4 ]
Xu, Xitong [4 ]
Qu, Zhe [4 ]
Gu, Lin [5 ,6 ]
Zhang, Qinghua [7 ]
Duan, Xidong [2 ]
Huang, Mingyuan [3 ]
Jiang, Chengbao [1 ]
Li, Bo [2 ]
Yang, Shengxue [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Hunan Univ, Coll Semicond, Coll Integrated Circuits, Sch Phys & Elect,Hunan Prov Key Lab Two Dimensiona, Changsha 410082, Peoples R China
[3] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[4] Chinese Acad Sci, Hefei Inst Phys Sci, Anhui Key Lab Condensed Matter Phys Extreme Condit, CAS Key Lab Photovolta & Energy Conservat Mat,High, Hefei 230031, Peoples R China
[5] Tsinghua Univ, Beijing Natl Ctr Electron Microscopy, Beijing 100084, Peoples R China
[6] Tsinghua Univ, Dept Mat Sci & Engn, Lab Adv Mat, Beijing 100084, Peoples R China
[7] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
2D magnets; exchange bias effect; Fe3GaTe2; spintronics; INTRINSIC FERROMAGNETISM; SPINTRONICS;
D O I
10.1002/adfm.202501047
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Van der Waals (vdW) magnets have opened up new avenues for exploring next-generation spintronic devices. The exchange bias (EB) effect plays an undisputed role in ensuring accurate data retrieval in spintronic devices. However, the unsustainably weak EB field (HEB) introduced by field cooling and the high-complexity of devices incompatible with silicon-based industry, limit the application of related vdW spintronic devices. Here, a compatible and simple method is reported for constructing Fe3GaTe2/oxidized Fe3GaTe2 heterostructures and achieving a spontaneous EB effect with a low-complexity device configuration. The spontaneous EB effect exhibits undecayed, tunable, and giant HEB of 2550 Oe at 3 K, along with a relatively high blocking temperature of 220 K. Field cooling and cross-sectional microstructure studies suggest that the EB effect arises from antiferromagnetic exchange coupling between Fe3GaTe2 and spin clusters frozen by alpha-Fe2O3 at the disordered interface. This work provides a unique avenue for customizing, integrating, and producing related spintronic devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The positive exchange bias property with hopping switching behavior in van der Waals magnet FeGeTe
    Hu, Shaojie
    Cui, Xiaomin
    Yue, Zengji
    Wang, Pangpang
    Guo, Lei
    Ohnishi, Kohei
    Wang, Xiaolin
    Kimura, Takashi
    2D MATERIALS, 2022, 9 (01)
  • [22] Room-temperature ferroelectricity in van der Waals SnP2S6
    He, Chaowei
    Zhang, Jiantian
    Gong, Li
    Yu, Peng
    FRONTIERS OF PHYSICS, 2024, 19 (04)
  • [23] Room-Temperature van der Waals Perpendicular Ferromagnet Through Interlayer Magnetic Coupling
    Cao, Yi
    Zhang, Xiaomin
    Zhang, Xian-Peng
    Yan, Faguang
    Wang, Ziao
    Zhu, Wenkai
    Tan, Hao
    Golovach, Vitaly N.
    Zheng, Houzhi
    Wang, Kaiyou
    PHYSICAL REVIEW APPLIED, 2022, 17 (05)
  • [24] Room-Temperature Magnetic Phase Transition in an Electrically Tuned van der Waals Ferromagnet
    Tan, Cheng
    Liao, Ji-Hai
    Zheng, Guolin
    Algarni, Meri
    Lin, Jia-Yi
    Ma, Xiang
    Mayes, Edwin L. H.
    Field, Matthew R.
    Albarakati, Sultan
    Panahandeh-Fard, Majid
    Alzahrani, Saleh
    Wang, Guopeng
    Yang, Yuanjun
    Culcer, Dimitrie
    Partridge, James
    Tian, Mingliang
    Xiang, Bin
    Zhao, Yu-Jun
    Wang, Lan
    PHYSICAL REVIEW LETTERS, 2023, 131 (16)
  • [25] Room-Temperature van der Waals Ferromagnet Switching by Spin-Orbit Torques
    Li, Weihao
    Zhu, Wenkai
    Zhang, Gaojie
    Wu, Hao
    Zhu, Shouguo
    Li, Runze
    Zhang, Enze
    Zhang, Xiaomin
    Deng, Yongcheng
    Zhang, Jing
    Zhao, Lixia
    Chang, Haixin
    Wang, Kaiyou
    ADVANCED MATERIALS, 2023, 35 (51)
  • [26] Ferromagnetism above Room Temperature in Two Intrinsic van der Waals Magnets with Large Coercivity
    Ma, Xiang
    Li, Ruimin
    Zheng, Bo
    Huang, Lizhen
    Zhang, Ying
    Wang, Shasha
    Wang, Changlong
    Tan, Haige
    Lu, Yalin
    Xiang, Bin
    NANO LETTERS, 2023, 23 (23) : 11226 - 11232
  • [27] Multilevel resistance states in van der Waals multiferroic tunnel junctions above room temperature
    Zhang, Yuanxiang
    Li, Xinlu
    Sheng, Jichao
    Yu, Shujie
    Zhang, Jia
    Su, Yurong
    APPLIED PHYSICS LETTERS, 2023, 123 (19)
  • [28] Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet
    Yun, Chao
    Guo, Haoran
    Lin, Zhongchong
    Peng, Licong
    Liang, Zhongyu
    Meng, Miao
    Zhang, Biao
    Zhao, Zijing
    Wang, Leran
    Ma, Yifei
    Liu, Yajing
    Li, Weiwei
    Ning, Shuai
    Hou, Yanglong
    Yang, Jinbo
    Luo, Zhaochu
    SCIENCE ADVANCES, 2023, 9 (49)
  • [29] Tunable Negative Differential Resistance in van der Waals Heterostructures at Room Temperature by Tailoring the Interface
    Fan, Sidi
    Quoc An Vu
    Lee, Sanshyub
    Thanh Luan Phan
    Han, Gyeongtak
    Kim, Young-Min
    Yu, Woo Jong
    Lee, Young Hee
    ACS NANO, 2019, 13 (07) : 8193 - 8201
  • [30] Room-Temperature Deuterium Separation in van Der Waals Gap Engineered Vermiculite Quantum Sieves
    Lalita, Saini
    Aparna, Rathi
    Suvigya, Kaushik
    Yeh, Li-Hsien
    Gopinadhan, Kalon
    SMALL, 2025, 21 (12)