Room-Temperature Deuterium Separation in van Der Waals Gap Engineered Vermiculite Quantum Sieves

被引:0
|
作者
Lalita, Saini [1 ]
Aparna, Rathi [1 ]
Suvigya, Kaushik [1 ]
Yeh, Li-Hsien [2 ,3 ]
Gopinadhan, Kalon [1 ,4 ]
机构
[1] Indian Inst Technol Gandhinagar, Dept Phys, Palaj 382355, Gujarat, India
[2] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Adv Mfg Res Ctr, Taipei 10607, Taiwan
[4] Indian Inst Technol Gandhinagar, Dept Mat Engn, Ahmadabad 382355, Gujarat, India
关键词
2d materials; hydrogen isotope separation; quantum sieving; van der Waals gap; PROTON TRANSPORT; HYDROGEN ISOTOPES; MEMBRANES;
D O I
10.1002/smll.202412229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the demand for nuclear energy grows, enriching deuterium from hydrogen mixtures has become more important. However, traditional methods are either very energy-intensive because they require extremely cold temperatures, or they don't separate deuterium (D2) from regular hydrogen (H2) very well, with a D2/H2 selectivity of approximate to 0.71. To achieve efficient deuterium separation at room temperature, materials with very tiny spaces, on an atomic scale are needed. For the first time, a material with spaces just approximate to 2.1 & Aring; (angstroms) wide is successfully created, which is similar in size to the wavelength of hydrogen isotopes at room temperature. This allows for efficient deuterium separation, with a much higher D2/H2 selectivity of approximate to 2.20, meaning the material can separate deuterium from hydrogen much more effectively at room temperature. The smaller deuterium molecules are more likely to pass through these tiny spaces, showing that quantum effects play a key role in this process. In contrast, a material like graphene oxide, with larger spaces (approximate to 4.0 & Aring;), only shows a lower D2/H2 selectivity of approximate to 1.17, indicating weaker quantum effects. This discovery suggests that materials with very small, atomic-scale spaces can be key to efficient separation of hydrogen isotopes at room temperature.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet
    Meisenheimer, Peter
    Zhang, Hongrui
    Raftrey, David
    Chen, Xiang
    Shao, Yu-Tsun
    Chan, Ying-Ting
    Yalisove, Reed
    Chen, Rui
    Yao, Jie
    Scott, Mary C.
    Wu, Weida
    Muller, David A.
    Fischer, Peter
    Birgeneau, Robert J.
    Ramesh, Ramamoorthy
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions
    Wenkai Zhu
    Shihong Xie
    Hailong Lin
    Gaojie Zhang
    Hao Wu
    Tiangui Hu
    Ziao Wang
    Xiaomin Zhang
    Jiahan Xu
    Yujing Wang
    Yuanhui Zheng
    Faguang Yan
    Jing Zhang
    Lixia Zhao
    Amalia Patanè
    Jia Zhang
    Haixin Chang
    Kaiyou Wang
    Chinese Physics Letters, 2022, 39 (12) : 135 - 144
  • [3] Pervasive beyond Room-Temperature Ferromagnetism in a Doped van der Waals Magnet
    Chen, Xiang
    Shao, Yu-Tsun
    Chen, Rui
    Susarla, Sandhya
    Hogan, Tom
    He, Yu
    Zhang, Hongrui
    Wang, Siqi
    Yao, Jie
    Ercius, Peter
    Muller, David A.
    Ramesh, Ramamoorthy
    Birgeneau, Robert J.
    PHYSICAL REVIEW LETTERS, 2022, 128 (21)
  • [4] Room-temperature electrical control of exciton flux in a van der Waals heterostructure
    Unuchek, Dmitrii
    Ciarrocchi, Alberto
    Avsar, Ahmet
    Watanabe, Kenji
    Taniguchi, Takashi
    Kis, Andras
    NATURE, 2018, 560 (7718) : 340 - +
  • [5] Room-temperature wavelike exciton transport in a van der Waals superatomic semiconductor
    Tulyagankhodjaev, Jakhangirkhodja A.
    Shih, Petra
    Yu, Jessica
    Russell, Jake C.
    Chica, Daniel G.
    Reynoso, Michelle E.
    Su, Haowen
    Stenor, Athena C.
    Roy, Xavier
    Berkelbach, Timothy C.
    Delor, Milan
    SCIENCE, 2023, 382 (6669) : 438 - 442
  • [6] Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions
    Zhu, Wenkai
    Xie, Shihong
    Lin, Hailong
    Zhang, Gaojie
    Wu, Hao
    Hu, Tiangui
    Wang, Ziao
    Zhang, Xiaomin
    Xu, Jiahan
    Wang, Yujing
    Zheng, Yuanhui
    Yan, Faguang
    Zhang, Jing
    Zhao, Lixia
    Patane, Amalia
    Zhang, Jia
    Chang, Haixin
    Wang, Kaiyou
    CHINESE PHYSICS LETTERS, 2022, 39 (12)
  • [7] Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet
    Peter Meisenheimer
    Hongrui Zhang
    David Raftrey
    Xiang Chen
    Yu-Tsun Shao
    Ying-Ting Chan
    Reed Yalisove
    Rui Chen
    Jie Yao
    Mary C. Scott
    Weida Wu
    David A. Muller
    Peter Fischer
    Robert J. Birgeneau
    Ramamoorthy Ramesh
    Nature Communications, 14
  • [8] Room-temperature electrical control of exciton flux in a van der Waals heterostructure
    Dmitrii Unuchek
    Alberto Ciarrocchi
    Ahmet Avsar
    Kenji Watanabe
    Takashi Taniguchi
    Andras Kis
    Nature, 2018, 560 : 340 - 344
  • [9] Room Temperature Quantum Emitters in van der Waals α-MoO3
    Lee, Jeonghan
    Wang, Haiyuan
    Park, Keun-Yeol
    Huh, Soonsang
    Kim, Donghan
    Yu, Mihyang
    Kim, Changyoung
    Thygesen, Kristian Sommer
    Lee, Jieun
    NANO LETTERS, 2025, 25 (03) : 1142 - 1149
  • [10] Room-temperature ferroelectricity in van der Waals SnP2S6
    He, Chaowei
    Zhang, Jiantian
    Gong, Li
    Yu, Peng
    FRONTIERS OF PHYSICS, 2024, 19 (04)