Room-Temperature Deuterium Separation in van Der Waals Gap Engineered Vermiculite Quantum Sieves

被引:0
|
作者
Lalita, Saini [1 ]
Aparna, Rathi [1 ]
Suvigya, Kaushik [1 ]
Yeh, Li-Hsien [2 ,3 ]
Gopinadhan, Kalon [1 ,4 ]
机构
[1] Indian Inst Technol Gandhinagar, Dept Phys, Palaj 382355, Gujarat, India
[2] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Adv Mfg Res Ctr, Taipei 10607, Taiwan
[4] Indian Inst Technol Gandhinagar, Dept Mat Engn, Ahmadabad 382355, Gujarat, India
关键词
2d materials; hydrogen isotope separation; quantum sieving; van der Waals gap; PROTON TRANSPORT; HYDROGEN ISOTOPES; MEMBRANES;
D O I
10.1002/smll.202412229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the demand for nuclear energy grows, enriching deuterium from hydrogen mixtures has become more important. However, traditional methods are either very energy-intensive because they require extremely cold temperatures, or they don't separate deuterium (D2) from regular hydrogen (H2) very well, with a D2/H2 selectivity of approximate to 0.71. To achieve efficient deuterium separation at room temperature, materials with very tiny spaces, on an atomic scale are needed. For the first time, a material with spaces just approximate to 2.1 & Aring; (angstroms) wide is successfully created, which is similar in size to the wavelength of hydrogen isotopes at room temperature. This allows for efficient deuterium separation, with a much higher D2/H2 selectivity of approximate to 2.20, meaning the material can separate deuterium from hydrogen much more effectively at room temperature. The smaller deuterium molecules are more likely to pass through these tiny spaces, showing that quantum effects play a key role in this process. In contrast, a material like graphene oxide, with larger spaces (approximate to 4.0 & Aring;), only shows a lower D2/H2 selectivity of approximate to 1.17, indicating weaker quantum effects. This discovery suggests that materials with very small, atomic-scale spaces can be key to efficient separation of hydrogen isotopes at room temperature.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Room-Temperature Spin Hall Effect in Graphene/MoS2 van der Waals Heterostructures
    Safeer, C. K.
    Ingla-Aynes, Josep
    Herling, Franz
    Garcia, Jose H.
    Vila, Marc
    Ontoso, Nerea
    Reyes Calvo, M.
    Roche, Stephan
    Hueso, Luis E.
    Casanova, Felix
    NANO LETTERS, 2019, 19 (02) : 1074 - 1082
  • [32] Room-Temperature, Current-Induced Magnetization Self-Switching in A Van Der Waals Ferromagnet
    Zhang, Hongrui
    Chen, Xiang
    Wang, Tianye
    Huang, Xiaoxi
    Chen, Xianzhe
    Shao, Yu-Tsun
    Meng, Fanhao
    Meisenheimer, Peter
    N'Diaye, Alpha
    Klewe, Christoph
    Shafer, Padraic
    Pan, Hao
    Jia, Yanli
    Crommie, Michael F.
    Martin, Lane W.
    Yao, Jie
    Qiu, Ziqiang
    Muller, David A.
    Birgeneau, Robert J.
    Ramesh, Ramamoorthy
    ADVANCED MATERIALS, 2024, 36 (09)
  • [33] Room-temperature multiferroicity in sliding van der Waals semiconductors with sub-0.3 V switching
    Rui Chen
    Fanhao Meng
    Hongrui Zhang
    Yuzi Liu
    Shancheng Yan
    Xilong Xu
    Linghan Zhu
    Jiazhen Chen
    Tao Zhou
    Jingcheng Zhou
    Fuyi Yang
    Penghong Ci
    Xiaoxi Huang
    Xianzhe Chen
    Tiancheng Zhang
    Yuhang Cai
    Kaichen Dong
    Yin Liu
    Kenji Watanabe
    Takashi Taniguchi
    Chia-Ching Lin
    Ashish Verma Penumatcha
    Ian Young
    Emory Chan
    Junqiao Wu
    Li Yang
    Ramamoorthy Ramesh
    Jie Yao
    Nature Communications, 16 (1)
  • [34] Interface-enhanced room-temperature Curie temperature in CrPS4/graphene van der Waals heterostructure
    Zhu, Wenxuan
    Song, Cheng
    Han, Lei
    Bai, Hua
    Chen, Chong
    Pan, Feng
    PHYSICAL REVIEW B, 2023, 108 (10)
  • [35] Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials
    Gogoi, Liyenda
    Gao, Weibo
    Ajayan, Pulickel M.
    Deb, Pritam
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (03) : 1430 - 1456
  • [36] Magnetism and spin dynamics in room-temperature van der Waals magnet Fe5GeTe2
    Alahmed, Laith
    Nepal, Bhuwan
    Macy, Juan
    Zheng, Wenkai
    Casas, Brian
    Sapkota, Arjun
    Jones, Nicholas
    Mazza, Alessandro R.
    Brahlek, Matthew
    Jin, Wencan
    Mahjouri-Samani, Masoud
    Zhang, Steven S. -L.
    Mewes, Claudia
    Balicas, Luis
    Mewes, Tim
    Li, Peng
    2D MATERIALS, 2021, 8 (04)
  • [37] Giant coercivity enhancement in a room-temperature van der Waals magnet through substitutional metal-doping
    Ahn, Hyo-Bin
    Jung, Soon-Gil
    Lim, Hyungjong
    Kim, Kwangsu
    Kim, Sanghoon
    Park, Tae-Eon
    Park, Tuson
    Lee, Changgu
    NANOSCALE, 2023, 15 (26) : 11290 - 11298
  • [38] Room-Temperature Antisymmetric Magnetoresistance in van der Waals Ferromagnet Fe3GaTe2 Nanosheets
    Hu, Guojing
    Guo, Hui
    Lv, Senhao
    Li, Linxuan
    Wang, Yunhao
    Han, Yechao
    Pan, Lulu
    Xie, Yulan
    Yu, Weiqi
    Zhu, Ke
    Qi, Qi
    Xian, Guoyu
    Zhu, Shiyu
    Shi, Jinan
    Bao, Lihong
    Lin, Xiao
    Zhou, Wu
    Yang, Haitao
    Gao, Hong-jun
    ADVANCED MATERIALS, 2024, 36 (27)
  • [39] Room-temperature low-threshold avalanche effect in stepwise van-der-Waals homojunction photodiodes
    Wang, Hailu
    Xia, Hui
    Liu, Yaqian
    Chen, Yue
    Xie, Runzhang
    Wang, Zhen
    Wang, Peng
    Miao, Jinshui
    Wang, Fang
    Li, Tianxin
    Fu, Lan
    Martyniuk, Piotr
    Xu, Jianbin
    Hu, Weida
    Lu, Wei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [40] Tunable room-temperature ferromagnetism in Co-doped two-dimensional van der Waals ZnO
    Chen, Rui
    Luo, Fuchuan
    Liu, Yuzi
    Song, Yu
    Dong, Yu
    Wu, Shan
    Cao, Jinhua
    Yang, Fuyi
    N'Diaye, Alpha
    Shafer, Padraic
    Liu, Yin
    Lou, Shuai
    Huang, Junwei
    Chen, Xiang
    Fang, Zixuan
    Wang, Qingjun
    Jin, Dafei
    Cheng, Ran
    Yuan, Hongtao
    Birgeneau, Robert J.
    Yao, Jie
    NATURE COMMUNICATIONS, 2021, 12 (01)