Distributional Reward Estimation for Effective Multi-Agent Deep Reinforcement Learning

被引:0
|
作者
Hu, Jifeng [1 ]
Sun, Yanchao [2 ]
Chen, Hechang [1 ]
Huang, Sili [1 ]
Piao, Haiyin [3 ]
Chang, Yi [1 ]
Sun, Lichao [4 ]
机构
[1] Jlilin Univ, Sch Artificial Intelligence, Changchun, Peoples R China
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Northwestern Polytech Univ, Xian, Peoples R China
[4] Lehigh Univ, Bethlehem, PA USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-agent reinforcement learning has drawn increasing attention in practice, e.g., robotics and automatic driving, as it can explore optimal policies using samples generated by interacting with the environment. However, high reward uncertainty still remains a problem when we want to train a satisfactory model, because obtaining high-quality reward feedback is usually expensive and even infeasible. To handle this issue, previous methods mainly focus on passive reward correction. At the same time, recent active reward estimation methods have proven to be a recipe for reducing the effect of reward uncertainty. In this paper, we propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL). Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training. Specifically, we design the multi-action-branch reward estimation to model reward distributions on all action branches. Then we utilize reward aggregation to obtain stable updating signals during training. Our intuition is that consideration of all possible consequences of actions could be useful for learning policies. The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [22] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [23] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [24] LIIR: Learning Individual Intrinsic Reward in Multi-Agent Reinforcement Learning
    Du, Yali
    Han, Lei
    Fang, Meng
    Dai, Tianhong
    Liu, Ji
    Tao, Dacheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [25] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [26] Effective Multi-Agent Deep Reinforcement Learning Control With Relative Entropy Regularization
    Miao, Chenyang
    Cui, Yunduan
    Li, Huiyun
    Wu, Xinyu
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 3704 - 3718
  • [27] Noise Distribution Decomposition Based Multi-Agent Distributional Reinforcement Learning
    Geng, Wei
    Xiao, Baidi
    Li, Rongpeng
    Wei, Ning
    Wang, Dong
    Zhao, Zhifeng
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (03) : 2301 - 2314
  • [28] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Yi Liu
    Xiang Wu
    Yuming Bo
    Jiacun Wang
    Lifeng Ma
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (11) : 2346 - 2348
  • [29] A Transfer Learning Framework for Deep Multi-Agent Reinforcement Learning
    Liu, Yi
    Wu, Xiang
    Bo, Yuming
    Wang, Jiacun
    Ma, Lifeng
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (11) : 2346 - 2348
  • [30] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722