Bayesian composite Lp-quantile regression

被引:0
|
作者
Arnroth, Lukas [1 ]
机构
[1] Uppsala Univ, Dept Stat, Uppsala, Sweden
关键词
Skewed exponential power distribution; L-P-quantile regression; Markov chain Monte Carlo; RISK MEASURES; SELECTION;
D O I
10.1007/s00184-024-00950-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
L-P-quantiles are a class of generalized quantiles defined as minimizers of an asymmetric power function. They include both quantiles, P = 1, and expectiles, P = 2, as special cases. This paper studies composite L-P-quantile regression, simultaneously extending single L-P-quantile regression and composite quantile regression. A Bayesian approach is considered, where a novel parameterization of the skewed exponential power distribution is utilized. Further, a Laplace prior on the regression coefficients allows for variable selection. Through a Monte Carlo study and applications to empirical data, the proposed method is shown to outperform Bayesian composite quantile regression in most aspects.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [1] Lp-quantile correlation
    Kowalski, Aleksander
    Rudiuk, Edmund
    American Journal of Mathematical and Management Sciences, 2004, 24 (3-4) : 255 - 278
  • [2] Optimal subsampling for Lp-quantile regression via decorrelated score
    Li, Xing
    Shao, Yujing
    Wang, Lei
    TEST, 2024, 33 (04) : 1084 - 1104
  • [3] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [4] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [5] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [6] Bayesian Regularized Regression Based on Composite Quantile Method
    Zhao, Wei-hua
    Zhang, Ri-quan
    Lu, Ya-zhao
    Liu, Ji-cai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 495 - 512
  • [7] Bayesian bridge and reciprocal bridge composite quantile regression
    Alsaadi, Zainab
    Alhamzawi, Rahim
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3571 - 3588
  • [8] Bayesian Regularized Regression Based on Composite Quantile Method
    Wei-hua ZHAO
    Ri-quan ZHANG
    Ya-zhao L
    Ji-cai LIU
    ActaMathematicaeApplicataeSinica, 2016, 32 (02) : 495 - 512
  • [9] Bayesian regularized regression based on composite quantile method
    Wei-hua Zhao
    Ri-quan Zhang
    Ya-zhao Lü
    Ji-cai Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 495 - 512
  • [10] Communication-efficient low-dimensional parameter estimation and inference for high-dimensional LP-quantile regression
    Gao, Junzhuo
    Wang, Lei
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (01) : 302 - 333