Quantum Network Tomography

被引:0
|
作者
de Andrade, Matheus Guedes [1 ]
Navas, Jake [2 ]
Guha, Saikat [3 ]
Montano, Ines [2 ]
Raymer, Michael [4 ]
Smith, Brian [4 ]
Towsley, Don [1 ]
机构
[1] Univ Massachusetts Amherst, Manning Coll Informat & Comp Sci, Amherst, MA 01003 USA
[2] No Arizona Univ, Dept Appl Phys & Mat Sci, Flagstaff, AZ 86011 USA
[3] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[4] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
来源
IEEE NETWORK | 2024年 / 38卷 / 05期
关键词
Protocols; Quantum networks; Tomography; Circuits; Quantum state; Estimation; Noise;
D O I
10.1109/MNET.2024.3403805
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Errors are the fundamental barrier to the development of quantum systems. Quantum networks are complex systems formed by the interconnection of multiple components and suffer from error accumulation. Characterizing errors introduced by quantum network components becomes a fundamental task to overcome their depleting effects in quantum communication. Quantum Network Tomography (QNT) addresses end-to-end characterization of link errors in quantum networks. It is a tool for building error-aware applications, network management, and system validation. We provide an overview of QNT and its initial results for characterizing quantum star networks. We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels. We analyze the performance of our estimators numerically by assessing the Quantum Cram & egrave;r-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime. Finally, we provide a discussion on current challenges in the field of QNT and elicit exciting research directions for future investigation.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 50 条
  • [31] Quantum tomography of an electron
    Jullien, T.
    Roulleau, P.
    Roche, B.
    Cavanna, A.
    Jin, Y.
    Glattli, D. C.
    NATURE, 2014, 514 (7524) : 603 - 607
  • [32] Dynamical quantum tomography
    Kech, Michael
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
  • [33] Quantum tomography benchmarking
    B. I. Bantysh
    A. Yu. Chernyavskiy
    Yu. I. Bogdanov
    Quantum Information Processing, 2021, 20
  • [34] An invitation to quantum tomography
    Artiles, LM
    Gill, RD
    Guta, MI
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 109 - 134
  • [35] Quantum tomography benchmarking
    Bantysh, B., I
    Chernyavskiy, A. Yu
    Bogdanov, Yu, I
    QUANTUM INFORMATION PROCESSING, 2021, 20 (10)
  • [36] Adaptive quantum tomography
    S. S. Straupe
    JETP Letters, 2016, 104 : 510 - 522
  • [37] Spectral quantum tomography
    Helsen, Jonas
    Battistel, Francesco
    Terhal, Barbara M.
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [38] Selective and efficient quantum state tomography and its application to quantum process tomography
    Bendersky, Ariel
    Pablo Paz, Juan
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [39] Quantum state tomography with incomplete data: Maximum entropy and variational quantum tomography
    Goncalves, D. S.
    Lavor, C.
    Gomes-Ruggiero, M. A.
    Cesario, A. T.
    Vianna, R. O.
    Maciel, T. O.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [40] Quantum Error Mitigation for Quantum State Tomography
    Ramadhani, Syahri
    Rehman, Junaid Ur
    Shin, Hyundong
    IEEE ACCESS, 2021, 9 : 107955 - 107964