Quantum Network Tomography

被引:0
|
作者
de Andrade, Matheus Guedes [1 ]
Navas, Jake [2 ]
Guha, Saikat [3 ]
Montano, Ines [2 ]
Raymer, Michael [4 ]
Smith, Brian [4 ]
Towsley, Don [1 ]
机构
[1] Univ Massachusetts Amherst, Manning Coll Informat & Comp Sci, Amherst, MA 01003 USA
[2] No Arizona Univ, Dept Appl Phys & Mat Sci, Flagstaff, AZ 86011 USA
[3] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[4] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
来源
IEEE NETWORK | 2024年 / 38卷 / 05期
关键词
Protocols; Quantum networks; Tomography; Circuits; Quantum state; Estimation; Noise;
D O I
10.1109/MNET.2024.3403805
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Errors are the fundamental barrier to the development of quantum systems. Quantum networks are complex systems formed by the interconnection of multiple components and suffer from error accumulation. Characterizing errors introduced by quantum network components becomes a fundamental task to overcome their depleting effects in quantum communication. Quantum Network Tomography (QNT) addresses end-to-end characterization of link errors in quantum networks. It is a tool for building error-aware applications, network management, and system validation. We provide an overview of QNT and its initial results for characterizing quantum star networks. We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels. We analyze the performance of our estimators numerically by assessing the Quantum Cram & egrave;r-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime. Finally, we provide a discussion on current challenges in the field of QNT and elicit exciting research directions for future investigation.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 50 条
  • [21] Renormalized quantum tomography
    D'Ariano, G. M.
    Sacchi, M. F.
    PHYSICS LETTERS A, 2010, 374 (05) : 713 - 724
  • [22] Quantum zeno tomography
    Pascazio, S
    Facchi, P
    Hradil, Z
    Krenn, G
    Rehácek, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2001, 49 (10-11): : 1071 - 1076
  • [23] Quantum tomography and nonlocality
    Shchukin, Evgeny V.
    Mancini, Stefano
    PHYSICA SCRIPTA, 2015, 90 (07) : 11
  • [24] Focus on quantum tomography
    Banaszek, K.
    Cramer, M.
    Gross, D.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [25] Spectral quantum tomography
    Jonas Helsen
    Francesco Battistel
    Barbara M. Terhal
    npj Quantum Information, 5
  • [26] Efficient Quantum Tomography
    O'Donnell, Ryan
    Wright, John
    STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 899 - 912
  • [27] COHERENT QUANTUM TOMOGRAPHY
    Ilmavirta, Joonas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (05) : 3039 - 3064
  • [28] Optimal Quantum Tomography
    Bisio, Alessandro
    Chiribella, Giulio
    D'Ariano, Giacomo Mauro
    Facchini, Stefano
    Perinotti, Paolo
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (06) : 1646 - 1660
  • [29] Tomography for quantum diagnostics
    Rehacek, J.
    Mogilevtsev, D.
    Hradil, Z.
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [30] Quantum field tomography
    Steffens, A.
    Riofrio, C. A.
    Huebener, R.
    Eisert, J.
    NEW JOURNAL OF PHYSICS, 2014, 16