Quantum Network Tomography

被引:0
|
作者
de Andrade, Matheus Guedes [1 ]
Navas, Jake [2 ]
Guha, Saikat [3 ]
Montano, Ines [2 ]
Raymer, Michael [4 ]
Smith, Brian [4 ]
Towsley, Don [1 ]
机构
[1] Univ Massachusetts Amherst, Manning Coll Informat & Comp Sci, Amherst, MA 01003 USA
[2] No Arizona Univ, Dept Appl Phys & Mat Sci, Flagstaff, AZ 86011 USA
[3] Univ Arizona, Wyant Coll Opt Sci, Tucson, AZ 85721 USA
[4] Univ Oregon, Dept Phys, Eugene, OR 97403 USA
来源
IEEE NETWORK | 2024年 / 38卷 / 05期
关键词
Protocols; Quantum networks; Tomography; Circuits; Quantum state; Estimation; Noise;
D O I
10.1109/MNET.2024.3403805
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Errors are the fundamental barrier to the development of quantum systems. Quantum networks are complex systems formed by the interconnection of multiple components and suffer from error accumulation. Characterizing errors introduced by quantum network components becomes a fundamental task to overcome their depleting effects in quantum communication. Quantum Network Tomography (QNT) addresses end-to-end characterization of link errors in quantum networks. It is a tool for building error-aware applications, network management, and system validation. We provide an overview of QNT and its initial results for characterizing quantum star networks. We apply a previously defined QNT protocol for estimating bit-flip channels to estimate depolarizing channels. We analyze the performance of our estimators numerically by assessing the Quantum Cram & egrave;r-Rao Bound (QCRB) and the Mean Square Error (MSE) in the finite sample regime. Finally, we provide a discussion on current challenges in the field of QNT and elicit exciting research directions for future investigation.
引用
收藏
页码:114 / 122
页数:9
相关论文
共 50 条
  • [1] Neural-network quantum state tomography
    Giacomo Torlai
    Guglielmo Mazzola
    Juan Carrasquilla
    Matthias Troyer
    Roger Melko
    Giuseppe Carleo
    Nature Physics, 2018, 14 : 447 - 450
  • [2] Experimental neural network enhanced quantum tomography
    Adriano Macarone Palmieri
    Egor Kovlakov
    Federico Bianchi
    Dmitry Yudin
    Stanislav Straupe
    Jacob D. Biamonte
    Sergei Kulik
    npj Quantum Information, 6
  • [3] Experimental neural network enhanced quantum tomography
    Palmieri, Adriano Macarone
    Kovlakov, Egor
    Bianchi, Federico
    Yudin, Dmitry
    Straupe, Stanislav
    Biamonte, Jacob D.
    Kulik, Sergei
    NPJ QUANTUM INFORMATION, 2020, 6 (01)
  • [4] Neural-network quantum state tomography
    Torlai, Giacomo
    Mazzola, Guglielmo
    Carrasquilla, Juan
    Troyer, Matthias
    Melko, Roger
    Carleo, Giuseppe
    NATURE PHYSICS, 2018, 14 (05) : 447 - +
  • [5] Optical neural network quantum state tomography
    Ying Zuo
    Chenfeng Cao
    Ningping Cao
    Xuanying Lai
    Bei Zeng
    Shengwang Du
    Advanced Photonics , 2022, (02) : 95 - 101
  • [6] Neural-network quantum state tomography
    Koutny, Dominik
    Motka, Libor
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis L.
    PHYSICAL REVIEW A, 2022, 106 (01)
  • [7] Optimal Monitor Placement in Quantum Network Tomography
    Raghunadhan, Athira Kalavampara
    De Andrade, Matheus Guedes
    Towsley, Don
    Dey, Indrakshi
    Kilper, Daniel
    Marchetti, Nicola
    2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING, QCE, VOL 2, 2024, : 370 - 371
  • [8] Optical neural network quantum state tomography
    Zuo, Ying
    Cao, Chenfeng
    Cao, Ningping
    Lai, Xuanying
    Zeng, Bei
    Du, Shengwang
    ADVANCED PHOTONICS, 2022, 4 (02):
  • [9] A Classical Network Protocol to Support Distributed Quantum State Tomography
    Oka, Takafumi
    Satoh, Takahiko
    Van Meter, Rodney
    2016 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2016,
  • [10] Quantum Network Tomography with Multi-party State Distribution
    de Andrade, Matheus Guedes
    Diaz, Jaime
    Navas, Jake
    Guha, Saikat
    Montano, Ines
    Smith, Brian
    Raymer, Michael
    Towsley, Don
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 400 - 409