Uniqueness of least energy solutions to the fractional Lane-Emden equation in the ball

被引:0
|
作者
Dela Torre, Azahara [2 ]
Parini, Enea [1 ]
机构
[1] Aix Marseille Univ, CNRS, I2M, 3 Pl Victor Hugo, F-13331 Marseille 03, France
[2] Sapienza Univ Roma, Fac Sci Matemat Fis & Nat, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, RM, Italy
关键词
NONLINEAR EQUATIONS; REGULARITY; SYMMETRY;
D O I
10.1007/s00208-024-03019-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove uniqueness of least energy solutions to the fractional Lane-Emden equation, under homogeneous Dirichlet exterior conditions, when the underlying domain is a ball B subset of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \subset \mathbb {R}<^>N$$\end{document}. The equation is characterized by a superlinear, subcritical power-like nonlinearity. The proof makes use of Morse theory and is inspired by some results obtained by C. S. Lin in the '90s. A new Hopf's Lemma-type result shown in this paper is an essential element in the proof of nondegeneracy of least energy solutions.
引用
收藏
页码:3987 / 4010
页数:24
相关论文
共 50 条