Finite Morse index solutions of the Henon Lane-Emden equation

被引:1
|
作者
Harrabi, Abdellaziz [1 ,2 ]
Zaidi, Cherif [3 ]
机构
[1] Northern Borders Univ, Math Dept, Ar Ar, Saudi Arabia
[2] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
[3] Univ Sfax, Fac Sci, Dept Math, Sfax, Tunisia
关键词
Liouville-type theorem; Stable or finite Morse index solutions; Monotonicity formula; Blowing down sequence; LIOUVILLE-TYPE THEOREMS; ELLIPTIC-EQUATIONS; STABLE-SOLUTIONS;
D O I
10.1186/s13660-019-2234-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with Liouville-type theorems of the Henon Lane-Emden triharmonic equations in whole space. We prove Liouville-type theorems for solutions belonging to one of the following classes: stable solutions and finite Morse index solutions (whether positive or sign-changing). Our proof is based on a combination of the Pohozaev-type identity, monotonicity formula of solutions and a blowing down sequence.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Partial regularity of finite Morse index solutions to the Lane-Emden equation
    Davila, Juan
    Dupaigne, Louis
    Farina, Alberto
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (01) : 218 - 232
  • [2] Finite Morse Index Solutions of the Fractional Henon-Lane-Emden Equation with Hardy Potential
    Kim, Soojung
    Lee, Youngae
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (02): : 251 - 283
  • [3] ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS
    Fazly, Mostafa
    Wei, Juncheng
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (02) : 433 - 460
  • [4] Finite Morse index solutions of the Hénon Lane–Emden equation
    Abdellaziz Harrabi
    Cherif Zaidi
    [J]. Journal of Inequalities and Applications, 2019
  • [5] A Morse index formula for radial solutions of Lane-Emden problems
    De Marchis, Francesca
    Ianni, Isabella
    Pacella, Filomena
    [J]. ADVANCES IN MATHEMATICS, 2017, 322 : 682 - 737
  • [6] Liouville theorems for the weighted Lane-Emden equation with finite Morse indices
    Chen, Caisheng
    Wang, Hui
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (13) : 4674 - 4682
  • [7] NEW SOLUTIONS OF LANE-EMDEN EQUATION
    SEIDOV, ZF
    KUZAKHMEDOV, RK
    [J]. ASTRONOMICHESKII ZHURNAL, 1978, 55 (06): : 1250 - 1255
  • [8] NONPERTURBATIVE SOLUTIONS OF THE LANE-EMDEN EQUATION
    BURT, PB
    [J]. PHYSICS LETTERS A, 1985, 109 (04) : 133 - 135
  • [9] Morse index and uniqueness of positive solutions of the Lane-Emden problem in planar domains
    De Marchis, F.
    Grossi, M.
    Ianni, I.
    Pacella, F.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 : 339 - 378
  • [10] Exact Morse index computation for nodal radial solutions of Lane-Emden problems
    De Marchis, Francesca
    Ianni, Isabella
    Pacella, Filomena
    [J]. MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 185 - 227