ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL LANE-EMDEN EQUATIONS

被引:31
|
作者
Fazly, Mostafa [1 ]
Wei, Juncheng
机构
[1] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
基金
加拿大自然科学与工程研究理事会;
关键词
R-N; CLASSIFICATION; LAPLACIAN;
D O I
10.1353/ajm.2017.0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify finite Morse index solutions of the following nonlocal Lane-Emden equation (-Delta)(s)u = vertical bar u vertical bar(p-1)u R-n for 1 < s < 2 via a novel monotonicity formula. For local cases s = 1 and s = 2 this classification was provided by Farina in 2007 and Davila, Dupaigne, Wang, and Wei in 2014, respectively. Moreover, for the nonlocal case 0 < s < 1 finite Morse index solutions are classified by Davila, Dupaigne, and Wei in their 2014 preprint.
引用
收藏
页码:433 / 460
页数:28
相关论文
共 50 条
  • [1] Finite Morse index solutions of the Henon Lane-Emden equation
    Harrabi, Abdellaziz
    Zaidi, Cherif
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [2] Partial regularity of finite Morse index solutions to the Lane-Emden equation
    Davila, Juan
    Dupaigne, Louis
    Farina, Alberto
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (01) : 218 - 232
  • [3] A Morse index formula for radial solutions of Lane-Emden problems
    De Marchis, Francesca
    Ianni, Isabella
    Pacella, Filomena
    ADVANCES IN MATHEMATICS, 2017, 322 : 682 - 737
  • [4] ON FINITE MORSE INDEX SOLUTIONS OF HIGHER ORDER FRACTIONAL ELLIPTIC EQUATIONS
    Rahal, Belgacem
    Zaidi, Cherif
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 575 - 597
  • [5] UNIFORM A PRIORI ESTIMATES FOR POSITIVE SOLUTIONS OF HIGHER ORDER LANE-EMDEN EQUATIONS IN Rn
    Dai, Wei
    Duyckaerts, Thomas
    PUBLICACIONS MATEMATIQUES, 2021, 65 (01) : 319 - 333
  • [6] Existence of solutions to higher order Lane-Emden type systems
    Schiera, Delia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 168 : 130 - 153
  • [7] Morse index and uniqueness of positive solutions of the Lane-Emden problem in planar domains
    De Marchis, F.
    Grossi, M.
    Ianni, I.
    Pacella, F.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 : 339 - 378
  • [8] Exact Morse index computation for nodal radial solutions of Lane-Emden problems
    De Marchis, Francesca
    Ianni, Isabella
    Pacella, Filomena
    MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 185 - 227
  • [9] Finite Morse Index Solutions of the Fractional Henon-Lane-Emden Equation with Hardy Potential
    Kim, Soojung
    Lee, Youngae
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, 26 (02): : 251 - 283
  • [10] Finite Morse index solutions of the Hénon Lane–Emden equation
    Abdellaziz Harrabi
    Cherif Zaidi
    Journal of Inequalities and Applications, 2019