Pell and Pell-Lucas numbers which are concatenations of three repdigits

被引:0
|
作者
Erduvan, Fatih [1 ]
Duman, Merve Guney [2 ]
机构
[1] Izmit Namik Kemal High Sch, MEB, Kocaeli, Turkiye
[2] Sakarya Univ Appl Sci, Dept Fundamental Sci Engn, Sakarya, Turkiye
关键词
Linear forms in logarithms; Pell number; Pell-Lucas number; Repdigit; Diophantine equations; Concatenations;
D O I
10.1007/s13226-024-00557-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we focus on finding the Pell and Pell-Lucas numbers which are concatenations of three repdigits. We show that these numbers are 169, 408, 985 and 198, 478, 1154, respectively. We use a lemma that provides a large upper bound for the subscript n in the equations and Baker's theory of lower bounds for a nonzero linear form in logarithms of algebraic numbers. In addition, continued fraction expansions of some irrational numbers were calculated to show that some inequalities have no solution.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] A New Generalization of Pell-Lucas Numbers ( Bi-Periodic Pell-Lucas Sequence)
    Uygun, Sukran
    Karatas, Hasan
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 469 - 479
  • [32] New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers
    Celik, Songul
    Durukan, Inan
    Ozkan, Engin
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [33] Pell and Pell-Lucas numbers with only one distinct digit
    Faye, Bernadette
    Luca, Florian
    ANNALES MATHEMATICAE ET INFORMATICAE, 2015, 45 : 55 - 60
  • [34] The Pell and Pell-Lucas Numbers via Square Roots of Matrices
    Arslan, Saadet
    Koken, Fikri
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2016, 8 (03): : 159 - 166
  • [35] On the problem of pillai with Pell numbers, Pell-Lucas numbers and powers of 3
    Faye, Bernadette
    Edjeou, Bilizimbeye
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (01) : 71 - 92
  • [36] Pell and pell-lucas trees
    Koshy, T. (tkoshy@framingham.edu), 1600, Applied Probability Trust (39):
  • [37] Pell-Lucas Numbers as Sum of Same Power of Consecutive Pell Numbers
    Rihane, Salah Eddine
    Tchammou, Euloge B.
    Togbe, Alain
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
  • [38] Repdigits base b as products of two Pell numbers or Pell–Lucas numbers
    Fatih Erduvan
    Refik Keskin
    Zafer Şiar
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [39] The Binet formulas for the Pell and Pell-Lucas p-numbers
    Kocer, E. Gokcen
    Tuglu, Naim
    ARS COMBINATORIA, 2007, 85 : 3 - 17
  • [40] Pell and Pell-Lucas numbers of the form xa±xb+1
    Kafle, Bir
    Rihane, Salah Eddine
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 879 - 893