Processing airborne LiDAR point cloud for solar cadasters: A review

被引:0
|
作者
Mahir, Inas H. [1 ]
Bachour, Dunia A. [2 ]
Abedrabboh, Khaled [1 ]
Perez-Astudillo, Daniel [2 ]
Al Fagih, Luluwah [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Sustainable Dev, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar
关键词
DEM; DSM; Interpolation; Solar cadaster; Solar potential; Urban topology; RESOLUTION; EXTRACTION; RADIATION; MODELS; CITY;
D O I
10.1016/j.apenergy.2025.125325
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper reviews existing literature in the critical role of processing Lidar point cloud data for generating Digital Elevation Models (DEMs)- Digital Surface Models (DSMs) and Digital Terrain Models (DTMs)-to develop solar cadasters, which are essential for optimizing solar energy deployment in urban environments. With a primary focus on DSMs, due to their significant role in the development of solar cadasters, the paper evaluates the influence of various interpolation techniques used in the reviewed literature for generating DEMs from LiDAR point cloud data. The review examines how interpolation methods affect key factors like spatial resolution, elevation accuracy, and building edge preservation, and identifies the most efficient interpolation techniques for generating DSMs tailored for solar cadaster applications. In addition, the paper highlights emerging trends in applying Machine Learning (ML) to improve DSM generation, providing insights into how these techniques enhance model accuracy and classification. The findings offer a foundation for advancing solar PV rooftop assessments using solar cadasters, contributing to more sustainable and resilient urban energy planning.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Small Sample Airborne LiDAR Point Cloud Classification Based on Transfer Learning
    Lei Xiangda
    Wang Hongtao
    Zhao Zongze
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (11):
  • [32] Adaptive Acquisition and Visualization of Point Cloud Using Airborne LIDAR and Game Engine
    Huang, Chengxuan
    Brock, Evan
    Wu, Dalei
    Liang, Yu
    INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2023, 14 (01):
  • [33] DENSIFICATION OF AIRBORNE LIDAR POINT CLOUD WITH FUSED ENCODER-DECODER NETWORKS
    Wang, Weimin
    Vinayaraj, Poliyapram
    Nakamura, Ryosuke
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2655 - 2658
  • [34] Multispectral Airborne LiDAR Point Cloud Classification With Maximum Entropy Hierarchical Pooling
    Jiang, Ge
    Lichti, Derek D.
    Yin, Tiangang
    Yan, Wai Yeung
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [35] Airborne LiDAR Technology: A Review of Data Collection and Processing Systems
    Lohani, Bharat
    Ghosh, Suddhasheel
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2017, 87 (04) : 567 - 579
  • [36] Airborne LiDAR Technology: A Review of Data Collection and Processing Systems
    Bharat Lohani
    Suddhasheel Ghosh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2017, 87 : 567 - 579
  • [37] AIRBORNE LIDAR OBSERVATIONS OF CLOUD TOPS
    HEMMANN, JH
    HERRICK, TJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (03): : 489 - 490
  • [38] Noise Point Detection From Airborne LiDAR Point Cloud Based on Spatial Hierarchical Directional Relationship
    Lin, Yunhao
    Wang, Yanjun
    Wang, Shuhan
    Li, Shaochun
    Wang, Mengjie
    Cai, Hengfan
    Teng, Fei
    IEEE ACCESS, 2022, 10 : 82076 - 82091
  • [39] Airborne LiDAR Point Cloud Roof Plane Segmentation Method Based on Voxel and Point Hybrid Growth
    Tu, Jingmin
    Shen, Yang
    Li, Jie
    Li, Mingming
    Li, Li
    Yao, Jian
    Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (22):
  • [40] BUILDING LIDAR POINT CLOUD DENOISING PROCESSING THROUGH SPARSE REPRESENTATION
    Xie Bingqian
    Gu Yanfeng
    Cao Zhimin
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 585 - 588