Processing airborne LiDAR point cloud for solar cadasters: A review

被引:0
|
作者
Mahir, Inas H. [1 ]
Bachour, Dunia A. [2 ]
Abedrabboh, Khaled [1 ]
Perez-Astudillo, Daniel [2 ]
Al Fagih, Luluwah [1 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Sustainable Dev, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Qatar Fdn, Qatar Environm & Energy Res Inst, Doha, Qatar
关键词
DEM; DSM; Interpolation; Solar cadaster; Solar potential; Urban topology; RESOLUTION; EXTRACTION; RADIATION; MODELS; CITY;
D O I
10.1016/j.apenergy.2025.125325
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper reviews existing literature in the critical role of processing Lidar point cloud data for generating Digital Elevation Models (DEMs)- Digital Surface Models (DSMs) and Digital Terrain Models (DTMs)-to develop solar cadasters, which are essential for optimizing solar energy deployment in urban environments. With a primary focus on DSMs, due to their significant role in the development of solar cadasters, the paper evaluates the influence of various interpolation techniques used in the reviewed literature for generating DEMs from LiDAR point cloud data. The review examines how interpolation methods affect key factors like spatial resolution, elevation accuracy, and building edge preservation, and identifies the most efficient interpolation techniques for generating DSMs tailored for solar cadaster applications. In addition, the paper highlights emerging trends in applying Machine Learning (ML) to improve DSM generation, providing insights into how these techniques enhance model accuracy and classification. The findings offer a foundation for advancing solar PV rooftop assessments using solar cadasters, contributing to more sustainable and resilient urban energy planning.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Research on Processing and Analysing of Point Cloud Data of a variety of Lidar
    Peng, Jiangfan
    Shen, Xingwang
    Guo, Ming
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,
  • [22] Airborne LiDAR Point Cloud Classification Using Ensemble Learning for DEM Generation
    Ciou, Ting-Shu
    Lin, Chao-Hung
    Wang, Chi-Kuei
    SENSORS, 2024, 24 (21)
  • [23] Estimating biomass of individual trees using point cloud data of airborne LIDAR
    Liu Q.
    Li Z.
    Chen E.
    Pang Y.
    Tian X.
    Cao C.
    Gaojishu Tongxin/Chinese High Technology Letters, 2010, 20 (07): : 765 - 770
  • [24] MAXENT: AN OPTIMAL NEIGHBOR SELECTION FOR MULTISPECTRAL AIRBORNE LIDAR POINT CLOUD CLASSIFICATION
    Bane, Ge
    Yan, Wai Yeung
    Lichti, Derek D.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4250 - 4253
  • [25] Classification of airborne LiDAR point cloud data based on information vector machine
    Liu Z.-Q.
    Li P.-C.
    Chen X.-W.
    Zhang B.-M.
    Guo H.-T.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2016, 24 (01): : 210 - 219
  • [26] ROBUST AND EFFECTIVE AIRBORNE LIDAR POINT CLOUD CLASSIFICATION BASED ON HYBRID FEATURES
    Liao, L. F.
    Tang, S. J.
    Liao, J. H.
    Wang, W. X.
    Li, X. M.
    Guo, R. Z.
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 229 - 235
  • [27] Classification of Airborne LiDAR Point Cloud Data Based on Multiscale Adaptive Features
    Yang Shujuan
    Zhang Keshu
    Shao Yongshe
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [28] Machine learning algorithm based airborne LiDAR point cloud classification method
    Zhang, Yanwen
    Wang, Xiaosong
    Fu, Yuwen
    Wang, Miao
    Liu, Haoguang
    Wang, Zhoujie
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 301 - 305
  • [29] A Dual Attention Neural Network for Airborne LiDAR Point Cloud Semantic Segmentation
    Zhang, Ka
    Ye, Longjie
    Xiao, Wen
    Sheng, Yehua
    Zhang, Shan
    Tao, Xia
    Zhou, Yaqin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] Airborne LiDAR Point Cloud Filtering Algorithm Based on Supervoxel Ground Saliency
    Fan, Weiwei
    Liu, Xinyi
    Zhang, Yongjun
    Yue, Dongdong
    Wang, Senyuan
    Zhong, Jiachen
    ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 73 - 79