A Traffic Flow Prediction Framework Based on Clustering and Heterogeneous Graph Neural Networks

被引:1
|
作者
Luo, Lei [1 ]
Han, Shiyuan [1 ]
Li, Zhongtao [1 ]
Yang, Jun [2 ]
Yang, Xixin [3 ]
机构
[1] Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Peoples R China
[2] Shandong Jiaotong Univ, Sch Automot Engn, Jinan 250023, Peoples R China
[3] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent transportation; Traffic flow prediction; Heterogeneous graph neural network; Traffic flow; Clustering;
D O I
10.1007/978-981-99-4742-3_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting is crucial for traffic management, but the complex spatio-temporal correlation and heterogeneity among traffic nodes make this problem challenging. While many deep spatio-temporal models have been proposed and applied to traffic flow prediction, they mostly focus on capturing the spatio-temporal correlation among traffic nodes, ignoring the influence of the functional characteristics of the area to which the nodes belong. Therefore, there is a need to propose a method to help models capture such influence. This paper presents a novel framework that enhances existing deep spatio-temporal models by combining clustering with heterogeneous graph neural networks. Our framework's clustering module measures the similarity between nodes in the traffic pattern using the Dynamic Time Warping and the Wasserstein distance and then applies spectral clustering to divide the nodes into different clusters based on traffic pattern. Our graph transformer module can adaptively construct a new graph for nodes in the same cluster, and the spatio-temporal feature learning module captures the spatio-temporal correlation among nodes based on the new graph. Extensive experiments on two real datasets demonstrate that our proposed framework can effectively improve the performance of some representative deep spatio-temporal models.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 50 条
  • [41] Drug-Target Interactions Prediction Based on Signed Heterogeneous Graph Neural Networks
    Chen, Ming
    Jiang, Yajian
    Lei, Xiujuan
    Pan, Yi
    Ji, Chunyan
    Jiang, Wei
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (01) : 231 - 244
  • [42] Drug-Target Interactions Prediction Based on Signed Heterogeneous Graph Neural Networks
    Ming CHEN
    Yajian JIANG
    Xiujuan LEI
    Yi PAN
    Chunyan JI
    Wei JIANG
    Chinese Journal of Electronics, 2024, 33 (01) : 231 - 244
  • [43] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)
  • [44] Traffic Speed Prediction Based on Heterogeneous Graph Attention Residual Time Series Convolutional Networks
    Du, Yan
    Qin, Xizhong
    Jia, Zhenhong
    Yu, Kun
    Lin, Mengmeng
    AI, 2021, 2 (04) : 650 - 661
  • [45] Graph ODE Recurrent Neural Networks for Traffic Flow Forecasting
    Su, Yuqiao
    Ren, Bin
    Zhang, Kunhua
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING, ICECE, 2022, : 178 - 182
  • [46] Spatiotemporal Graph Attention Networks for Urban Traffic Flow Prediction
    Zhao, Yuanpeng
    Xu, Yepeng
    He, Xitao
    Zhang, Dengyin
    2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, : 340 - 345
  • [47] A traffic flow prediction method based on constrained dynamic graph convolutional recurrent networks
    Xiao, Hongxiang
    Zhao, Zihan
    Yang, Tiejun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [48] Classification and prediction of traffic flow based on real data using neural networks
    Pamula, T. (teresa.pamula@polsl.pl), 1600, De Gruyter Open Ltd (24):
  • [49] Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Xin, Xiaoyang
    Cheng, Zesheng
    Xia, Fengqian
    Li, Jianbo
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (08) : 120 - 133
  • [50] Link Prediction Based on Graph Neural Networks
    Zhang, Muhan
    Chen, Yixin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31