A CONVERSE OF DYNAMICAL MORDELL-LANG CONJECTURE IN POSITIVE CHARACTERISTIC

被引:0
|
作者
Lee, Jungin [1 ]
Nam, Gyeonghyeon [1 ]
机构
[1] Ajou Univ, Dept Math, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
D O I
10.1090/proc/17004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the converse of the dynamical Mordell- Lang conjecture in positive characteristic: For every subset S subset of N 0 which is a union of finitely many arithmetic progressions along with finitely many p-sets {Sigma m } of the form j =1 c j p k j n j : n j E N 0 (cj E Q, k j E N 0 ), there exist a split torus X = G k m defined over K = F p ( t ), an endomorphism Phi of X , alpha E X ( K ) and a closed subvariety V subset of X such that {n E N 0 : Phi n(alpha) E V ( K ) } = S .
引用
收藏
页码:603 / 609
页数:7
相关论文
共 50 条
  • [31] Towards the Full Mordell-Lang Conjecture for Drinfeld Modules
    Ghioca, Dragos
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (01): : 95 - 101
  • [32] Height gap conjectures, D-finiteness, and a weak dynamical Mordell-Lang conjecture
    Bell, Jason P.
    Hu, Fei
    Satriano, Matthew
    MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 971 - 992
  • [33] THE DYNAMICAL MORDELL-LANG PROBLEM FOR ETALE MAPS
    Bell, J. P.
    Ghioca, D.
    Tucker, T. J.
    AMERICAN JOURNAL OF MATHEMATICS, 2010, 132 (06) : 1655 - 1675
  • [34] Dynamical Mordell-Lang and automorphisms of blow-ups
    Lesieutre, John
    Litt, Daniel
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 1 - 25
  • [35] A case of the dynamical Mordell–Lang conjecture
    Robert L. Benedetto
    Dragos Ghioca
    Pär Kurlberg
    Thomas J. Tucker
    Mathematische Annalen, 2012, 352 : 1 - 26
  • [36] The dynamical Mordell-Lang problem for intersection of two orbits
    Rout, Sudhansu Sekhar
    JOURNAL OF NUMBER THEORY, 2020, 207 : 122 - 137
  • [37] Infinitesimal Mordell-Lang
    Buium, A
    JOURNAL OF NUMBER THEORY, 2001, 90 (02) : 185 - 206
  • [38] Periodic points, linearizing maps, and the dynamical Mordell-Lang problem
    Ghioca, D.
    Tucker, T. J.
    JOURNAL OF NUMBER THEORY, 2009, 129 (06) : 1392 - 1403
  • [39] The Dynamical Mordell-Lang Conjecture for Skew-Linear Self-Maps. Appendix by Michael Wibmer
    Ghioca, Dragos
    Xie, Junyi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (21) : 7433 - 7453
  • [40] Uniformity in Mordell-Lang for curves
    Dimitrov, Vesselin
    Gao, Ziyang
    Habegger, Philipp
    ANNALS OF MATHEMATICS, 2021, 194 (01) : 237 - 298