Unpaired Image-to-Image Translation with Density Changing Regularization

被引:0
|
作者
Xie, Shaoan [1 ]
Ho, Qirong [2 ]
Zhang, Kun [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Mohamed bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unpaired image-to-image translation aims to translate an input image to another domain such that the output image looks like an image from another domain while important semantic information are preserved. Inferring the optimal mapping with unpaired data is impossible without making any assumptions. In this paper, we make a density changing assumption where image patches of high probability density should be mapped to patches of high probability density in another domain. Then we propose an efficient way to enforce this assumption: we train the flows as density estimators and penalize the variance of density changes. Despite its simplicity, our method achieves the best performance on benchmark datasets and needs only 56 - 86% of training time of the existing state-of-the-art method. The training and evaluation code are avaliable at https://github.com/Mid-Push/ Decent.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] UNPAIRED IMAGE-TO-IMAGE TRANSLATION WITH LIMITED DATA TO REVEAL SUBTLE PHENOTYPES
    Bourou, Anis
    Daupin, Kevin
    Dubreuil, Veronique
    De Thonel, Aurelie
    Mezger-Lallemand, Valerie
    Genovesio, Auguste
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [42] Exploring Double Cross Cyclic Interpolation in Unpaired Image-to-Image Translation
    Lopez, Jorge
    Mauricio, Antoni
    Camara, Guillermo
    2019 32ND SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2019, : 124 - 130
  • [43] Unpaired Image-to-Image Translation Using Negative Learning for Noisy Patches
    Hung, Yu-Hsiang
    Tan, Julianne
    Huang, Tai-Ming
    Hsu, Shang-Che
    Chen, Yi-Ling
    Hua, Kai-Lung
    IEEE MULTIMEDIA, 2022, 29 (04) : 59 - 68
  • [44] Learning Image-to-Image Translation Using Paired and Unpaired Training Samples
    Tripathy, Soumya
    Kannala, Juho
    Rahtu, Esa
    COMPUTER VISION - ACCV 2018, PT II, 2019, 11362 : 51 - 66
  • [45] Image-to-Image Translation with Multi-Path Consistency Regularization
    Lin, Jianxin
    Xia, Yingce
    Wang, Yijun
    Qin, Tao
    Chen, Zhibo
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2980 - 2986
  • [46] Mutually Improved Endoscopic Image Synthesis and Landmark Detection in Unpaired Image-to-Image Translation
    Sharan, Lalith
    Romano, Gabriele
    Koehler, Sven
    Kelm, Halvar
    Karck, Matthias
    De Simone, Raffaele
    Engelhardt, Sandy
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (01) : 127 - 138
  • [47] Spectral normalization and dual contrastive regularization for image-to-image translation
    Zhao, Chen
    Cai, Wei-Ling
    Yuan, Zheng
    VISUAL COMPUTER, 2025, 41 (01): : 129 - 140
  • [48] SEMANTIC-AWARE UNPAIRED IMAGE-TO-IMAGE TRANSLATION FOR URBAN SCENE IMAGES
    Li, Zongyao
    Togo, Ren
    Ogawa, Takahiro
    Haseyama, Miki
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2150 - 2154
  • [49] Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
    Zhu, Jun-Yan
    Park, Taesung
    Isola, Phillip
    Efros, Alexei A.
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 2242 - 2251
  • [50] Self-Supervised Dense Consistency Regularization for Image-to-Image Translation
    Ko, Minsu
    Cha, Eunju
    Suh, Sungjoo
    Lee, Huijin
    Han, Jae-Joon
    Shin, Jinwoo
    Han, Bohyung
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18280 - 18289