Unpaired Image-to-Image Translation with Density Changing Regularization

被引:0
|
作者
Xie, Shaoan [1 ]
Ho, Qirong [2 ]
Zhang, Kun [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Mohamed bin Zayed Univ Artificial Intelligence, Abu Dhabi, U Arab Emirates
基金
美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unpaired image-to-image translation aims to translate an input image to another domain such that the output image looks like an image from another domain while important semantic information are preserved. Inferring the optimal mapping with unpaired data is impossible without making any assumptions. In this paper, we make a density changing assumption where image patches of high probability density should be mapped to patches of high probability density in another domain. Then we propose an efficient way to enforce this assumption: we train the flows as density estimators and penalize the variance of density changes. Despite its simplicity, our method achieves the best performance on benchmark datasets and needs only 56 - 86% of training time of the existing state-of-the-art method. The training and evaluation code are avaliable at https://github.com/Mid-Push/ Decent.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Exploring Negatives in Contrastive Learning for Unpaired Image-to-Image Translation
    Lin, Yupei
    Zhang, Sen
    Chen, Tianshui
    Lu, Yongyi
    Li, Guangping
    Shi, Yukai
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1186 - 1194
  • [22] Homomorphic Latent Space Interpolation for Unpaired Image-To-Image Translation
    Chen, Ying-Cong
    Xu, Xiaogang
    Tian, Zhuotao
    Jia, Jiaya
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2403 - 2411
  • [23] UNPAIRED IMAGE-TO-IMAGE SHAPE TRANSLATION ACROSS FASHION DATA
    Wang, Kaili
    Ma, Liqian
    Oramas, Jose M.
    Van Gool, Luc
    Tuytelaars, Tinne
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 206 - 210
  • [24] Rethinking the Paradigm of Content Constraints in Unpaired Image-to-Image Translation
    Cai, Xiuding
    Zhu, Yaoyao
    Miao, Dong
    Fu, Linjie
    Yao, Yu
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 891 - 899
  • [25] Cross-Domain Interpolation for Unpaired Image-to-Image Translation
    Lopez, Jorge
    Mauricio, Antoni
    Diaz, Jose
    Camara, Guillermo
    COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 542 - 551
  • [26] Unpaired Image-to-Image Translation via Latent Energy Transport
    Zhao, Yang
    Chen, Changyou
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16413 - 16422
  • [27] Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image Translation
    Xu, Yanwu
    Xie, Shaoan
    Wu, Wenhao
    Zhang, Kun
    Gong, Mingming
    Batmanghelich, Kayhan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18290 - 18299
  • [28] One-to-one Mapping for Unpaired Image-to-image Translation
    Shen, Zengming
    Chen, Yifan
    Huang, Thomas S.
    Zhou, S. Kevin
    Georgescu, Bogdan
    Liu, Xuqi
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 1159 - 1168
  • [29] DehazeGAN: Underwater Haze Image Restoration using Unpaired Image-to-image Translation
    Cho, Younggun
    Malav, Ramavtar
    Pandey, Gaurav
    Kim, Ayoung
    IFAC PAPERSONLINE, 2019, 52 (21): : 82 - 85
  • [30] Multi-feature contrastive learning for unpaired image-to-image translation
    Yao Gou
    Min Li
    Yu Song
    Yujie He
    Litao Wang
    Complex & Intelligent Systems, 2023, 9 : 4111 - 4122