Unsupervised Cross-domain Object Detection via Multiple Domain Randomization

被引:1
|
作者
Luo, Fang [1 ]
Liu, Jie [1 ]
Ho, George To Sum [2 ]
Yan, Kun [1 ]
机构
[1] Wuhan Univ Technol, Coll Comp Sci & Artificial Intelligence, Wuhan, Peoples R China
[2] Hang Seng Univ Hong Kong, Coll Dept Supply Chain & Informat Management, Hong Kong, Peoples R China
关键词
object detection; domain shift; unsupervised domain adaptation; image translation; domain randomization;
D O I
10.1109/CSCWD61410.2024.10580650
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Cross-domain detection refers to the challenge of detecting objects or patterns belonging to different domains or contexts. The cross-domain detection problem arises when the training data and test data do not subject to independent and identical distribution, leading to a significant decrease in the performance of existing object detection methods. In order to address the aforementioned cross-domain detection problem, this paper proposes an unsupervised cross-domain object detection method based on multi-domain randomization. Firstly, the method utilizes Cycle-GAN to generate multiple randomized domains, enabling the comprehensive learning of the target domain overall's feature distribution. Then, a domain randomization parameter callback module is devised to retain the key detection information of the object, thereby improving the model's stability. Additionally, to alleviate the problem of domain bias and inconsistency between data and labels, a source domain consistency loss is incorporated to enhance the convergence speed of the model and amplify the semantic information embedded within the features. The experimental results on multiple cross-domain datasets show that the proposed method outperforms existing unsupervised cross-domain object detection algorithms in terms of cross-domain detection performance.
引用
收藏
页码:845 / 851
页数:7
相关论文
共 50 条
  • [31] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Li, Xiangning
    Pan, Chen
    He, Lingmin
    Li, Xinyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 23311 - 23331
  • [32] Small Object Detection in Infrared Images: Learning from Imbalanced Cross-Domain Data via Domain Adaptation
    Kim, Jaekyung
    Huh, Jungwoo
    Park, Ingu
    Bak, Junhyeong
    Kim, Donggeon
    Lee, Sanghoon
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [33] An Unsupervised Domain Adaptation Approach For Cross-Domain Visual Classification
    Hou, Cheng-An
    Yeh, Yi-Ren
    Wang, Yu-Chiang Frank
    2015 12TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2015,
  • [34] Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification
    Xiangning Li
    Chen Pan
    Lingmin He
    Xinyu Li
    Multimedia Tools and Applications, 2024, 83 : 23311 - 23331
  • [35] Domain transfer via cross-domain analogy
    Klenk, Matthew
    Forbus, Ken
    COGNITIVE SYSTEMS RESEARCH, 2009, 10 (03) : 240 - 250
  • [36] Domain Adaptive Video Semantic Segmentation via Cross-Domain Moving Object Mixing
    Cho, Kyusik
    Lee, Suhyeon
    Seong, Hongje
    Kim, Euntai
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 489 - 498
  • [37] Adapting Object Detectors via Selective Cross-Domain Alignment
    Zhu, Xinge
    Pang, Jiangmiao
    Yang, Ceyuan
    Shi, Jianping
    Lin, Dahua
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 687 - 696
  • [38] Translation as Cross-Domain Knowledge: Attention Augmentation for Unsupervised Cross-Domain Segmenting and Labeling Tasks
    Luo, Ruixuan
    Zhang, Yi
    Chen, Sishuo
    Sun, Xu
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 1896 - 1906
  • [39] Unsupervised Cross-Domain Rumor Detection with Contrastive Learning and Cross-Attention
    Ran, Hongyan
    Jia, Caiyan
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13510 - 13518
  • [40] Cross-Domain Object Detection for Autonomous Driving: A Stepwise Domain Adaptative YOLO Approach
    Li, Guofa
    Ji, Zefeng
    Qu, Xingda
    Zhou, Rui
    Cao, Dongpu
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (03): : 603 - 615