A Versatile Ionic Liquid Additive for Perovskite Solar Cells: Surface Modification, Hole Transport Layer Doping, and Green Solvent Processing

被引:0
|
作者
Jeong, Seong-Jin [1 ]
Park, Sung Hwan [2 ]
Yun, Siwon [3 ]
Li, Meng Qiang [4 ]
Kim, Dasol [4 ]
Kim, Yongchan [4 ]
Chang, Yun Hee [1 ]
Lee, Jaewon [4 ]
Lim, Jongchul [3 ]
Yang, Tae-Youl [1 ]
机构
[1] Chungnam Natl Univ, Dept Mat Sci & Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[2] Korea Res Inst Chem Technol KRICT, Div Adv Mat, 141 Gajeong Ro, Daejeon 34114, South Korea
[3] Chungnam Natl Univ, Grad Sch Energy Sci & Technol GEST, 99 Daehak Ro, Daejeon 34134, South Korea
[4] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
dopant; hole transport layer; ionic liquid; perovskite solar cells; surface passivation; HALIDE PEROVSKITES; HIGHLY EFFICIENT; 4-TERT-BUTYLPYRIDINE; DEGRADATION; STRATEGIES;
D O I
10.1002/advs.202412959
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hole-transport layers (HTL) in perovskite solar cells (PSCs) with an n-i-p structure are commonly doped by bis(trifluoromethane)sulfonimide (TFSI) salts to enhance hole conduction. While lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant is a widely used and effective dopant, it has significant limitations, including the need for additional solvents and additives, environmental sensitivity, unintended oxidation, and dopant migration, which can lead to lower stability of PSCs. A novel ionic liquid, 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (MMPyTFSI), is explored as an alternative dopant for 2,2 ',7,7 '-tetrakis(N,N-di-p-methoxyphenylamino)-9,9 '-spirobifluorene (spiro-OMeTAD). MMPy ions act as a surface passivator, reducing defects on the perovskite surface, while TFSI ions facilitate p-type doping. MMPyTFSI functions as an efficient dopant, maintaining excellent performance even when tetrahydrofuran (THF) is utilized as a solvent in place of chlorobenzene (CB), while significantly reducing the environmental impact of the process. The optimized PSC achieves a power conversion efficiency (PCE) of 23.10% and demonstrates enhanced long-term stability in all aging tests for over 1000 h in a humid atmosphere, at high temperature, and under simulated sunlight illumination. These results demonstrate that MMPyTFSI is an effective and environmentally friendly dopant for producing stable and efficient PSCs.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Doping Strategies for Tetrasubstituted Paracyclophane Hole Transport Layers in Perovskite Solar Cells
    Schulz, Alexander Deniz
    Otterbach, Steffen Andreas
    Tappert, Henrik
    Elsing, David
    Wenzel, Wolfgang
    Kozlowska, Mariana
    Braese, Stefan
    Colsmann, Alexander
    Roehm, Holger
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (47)
  • [42] Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering
    Min-Cherl Jung
    Sonia R. Raga
    Luis K. Ono
    Yabing Qi
    Scientific Reports, 5
  • [43] High-Performance Perovskite Solar Cells by Doping Didodecyl Dimethyl Ammonium Bromide in the Hole Transport Layer
    Liu, Juanmei
    Wu, Jihuai
    Sun, Weihai
    Wang, Xiaobing
    Du, Yitian
    Li, Guodong
    Chen, Qi
    Cai, Fangfang
    Zhu, Sijia
    Lan, Zhang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 13471 - 13481
  • [44] Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells
    Ying Zhang
    Chenxiao Zhou
    Lizhi Lin
    Fengtao Pei
    Mengqi Xiao
    Xiaoyan Yang
    Guizhou Yuan
    Cheng Zhu
    Yu Chen
    Qi Chen
    Nano-Micro Letters, 2023, 15 (10) : 313 - 324
  • [45] Interface engineering of organic hole transport layer with facile molecular doping for highly efficient perovskite solar cells
    Park, Hansol
    Heo, Jihyeon
    Jeong, Bum Ho
    Lee, Jongmin
    Park, Hui Joon
    JOURNAL OF POWER SOURCES, 2023, 556
  • [46] Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering
    Jung, Min-Cherl
    Raga, Sonia R.
    Ono, Luis K.
    Qi, Yabing
    SCIENTIFIC REPORTS, 2015, 5
  • [47] Perovskite/Graphene Solar Cells without a Hole-Transport Layer
    Ishikawa, Ryousuke
    Watanabe, Sho
    Yamazaki, Sohei
    Oya, Tomoya
    Tsuboi, Nozomu
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01): : 171 - 175
  • [48] A Hybrid Hole Transport Layer for Perovskite-Based Solar Cells
    Asare, Joseph
    Sanni, Dahiru M.
    Agyei-Tuffour, Benjamin
    Agede, Ernest
    Oyewole, Oluwaseun Kehinde
    Yerramilli, Aditya S.
    Doumon, Nutifafa Y.
    ENERGIES, 2021, 14 (07)
  • [49] Perovskite solar cells enhancement by CZTS based hole transport layer
    Xu, Haoyu
    Lang, Runze
    Gao, Chao
    Yu, Wei
    Lu, Wanbing
    Mohammadi, Shahriar
    SURFACES AND INTERFACES, 2022, 33
  • [50] Surface modification of sputtered NiOx hole transport layer for CH3NH3PbI3 perovskite solar cells
    Yanagida, Masatoshi
    Nakamura, Tensho
    Yoshida, Tsukasa
    Khadka, Dhruba B.
    Shirai, Yasuhiro
    Miyano, Kenjiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (SK)