A Versatile Ionic Liquid Additive for Perovskite Solar Cells: Surface Modification, Hole Transport Layer Doping, and Green Solvent Processing

被引:0
|
作者
Jeong, Seong-Jin [1 ]
Park, Sung Hwan [2 ]
Yun, Siwon [3 ]
Li, Meng Qiang [4 ]
Kim, Dasol [4 ]
Kim, Yongchan [4 ]
Chang, Yun Hee [1 ]
Lee, Jaewon [4 ]
Lim, Jongchul [3 ]
Yang, Tae-Youl [1 ]
机构
[1] Chungnam Natl Univ, Dept Mat Sci & Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[2] Korea Res Inst Chem Technol KRICT, Div Adv Mat, 141 Gajeong Ro, Daejeon 34114, South Korea
[3] Chungnam Natl Univ, Grad Sch Energy Sci & Technol GEST, 99 Daehak Ro, Daejeon 34134, South Korea
[4] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
dopant; hole transport layer; ionic liquid; perovskite solar cells; surface passivation; HALIDE PEROVSKITES; HIGHLY EFFICIENT; 4-TERT-BUTYLPYRIDINE; DEGRADATION; STRATEGIES;
D O I
10.1002/advs.202412959
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hole-transport layers (HTL) in perovskite solar cells (PSCs) with an n-i-p structure are commonly doped by bis(trifluoromethane)sulfonimide (TFSI) salts to enhance hole conduction. While lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dopant is a widely used and effective dopant, it has significant limitations, including the need for additional solvents and additives, environmental sensitivity, unintended oxidation, and dopant migration, which can lead to lower stability of PSCs. A novel ionic liquid, 1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide (MMPyTFSI), is explored as an alternative dopant for 2,2 ',7,7 '-tetrakis(N,N-di-p-methoxyphenylamino)-9,9 '-spirobifluorene (spiro-OMeTAD). MMPy ions act as a surface passivator, reducing defects on the perovskite surface, while TFSI ions facilitate p-type doping. MMPyTFSI functions as an efficient dopant, maintaining excellent performance even when tetrahydrofuran (THF) is utilized as a solvent in place of chlorobenzene (CB), while significantly reducing the environmental impact of the process. The optimized PSC achieves a power conversion efficiency (PCE) of 23.10% and demonstrates enhanced long-term stability in all aging tests for over 1000 h in a humid atmosphere, at high temperature, and under simulated sunlight illumination. These results demonstrate that MMPyTFSI is an effective and environmentally friendly dopant for producing stable and efficient PSCs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Alcohol solvent treatment of PEDOT:PSS hole transport layer for optimized inverted perovskite solar cells
    Yue Liu
    Hongkun Cai
    Yinhuan Chu
    Jian Su
    Xiaofang Ye
    Jian Ni
    Juan Li
    Jianjun Zhang
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 12765 - 12774
  • [22] Alcohol solvent treatment of PEDOT:PSS hole transport layer for optimized inverted perovskite solar cells
    Liu, Yue
    Cai, Hongkun
    Chu, Yinhuan
    Su, Jian
    Ye, Xiaofang
    Ni, Jian
    Li, Juan
    Zhang, Jianjun
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (15) : 12765 - 12774
  • [23] Perovskite Inverted Solar Cells: Impact of Hole Transport Layer and Anti-Solvent Ejection Time
    Perrin, Lara
    Lemercier, Thibault
    Planes, Emilie
    Berson, Solenn
    Flandin, Lionel
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 1324 - 1327
  • [24] Regulating the Solvent Resistance of Hole Transport Layer for High-Performance Inverted Perovskite Solar Cells
    Li, Sihan
    Chen, Wentao
    Yang, Yuxuan
    Zhao, Peng
    Cui, Hong
    Huang, Yuqiong
    He, Dingqian
    Ning, Yunhao
    Feng, Yaqing
    Zhang, Bao
    SOLAR RRL, 2023, 7 (13)
  • [25] Improving efficiency of polymer hole transport layer based perovskite solar cells via interfacial modification
    Meng, Jiawei
    Wang, Zhongqiang
    Wang, Shenjian
    Ren, Yabing
    Zou, Xuefeng
    Zhao, Min
    Wang, Hua
    Hao, Yuying
    Xu, Bingshe
    SYNTHETIC METALS, 2023, 292
  • [26] A Universal and Versatile Hole Transport Layer "Activator" Enables Stable Perovskite Solar Cells with Efficiency Near 25%
    Zhao, Rongjun
    Wu, Tai
    Huang, Rong
    Wang, Yude
    Hua, Yong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (30)
  • [27] Surface modification with ionic liquid for efficient CsPbI2Br perovskite solar cells
    Pu, Xingyu
    Han, Jian
    Wang, Shuangjie
    Zhou, Hui
    Cao, Qi
    Yang, Jiabao
    He, Ziwei
    Li, Xuanhua
    JOURNAL OF MATERIOMICS, 2021, 7 (05) : 1039 - 1048
  • [28] Ionic Liquid for Perovskite Solar Cells: An Emerging Solvent Engineering Technology
    Chao, Lingfeng
    Niu, Tingting
    Xia, Yingdong
    Chen, Yonghua
    Huang, Wei
    ACCOUNTS OF MATERIALS RESEARCH, 2021, 2 (11): : 1059 - 1070
  • [29] Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells
    Wu, Wu-Qiang
    Wang, Qi
    Fang, Yanjun
    Shao, Yuchuan
    Tang, Shi
    Deng, Yehao
    Lu, Haidong
    Liu, Ye
    Li, Tao
    Yang, Zhibin
    Gruverman, Alexei
    Huang, Jinsong
    NATURE COMMUNICATIONS, 2018, 9
  • [30] Effect of Hole Transport Layer in Planar Inverted Perovskite Solar Cells
    Li, Dan
    Cui, Jin
    Zhang, Hua
    Li, Hao
    Wang, Mingkui
    Shen, Yan
    CHEMISTRY LETTERS, 2016, 45 (01) : 89 - 91