Advancing Graphene Synthesis: Low-Temperature Growth and Hydrogenation Mechanisms Using Plasma-Enhanced Chemical Vapor Deposition

被引:0
|
作者
Meskinis, Sarunas [1 ]
Lazauskas, Algirdas [1 ]
Jankauskas, Sarunas [1 ]
Guobiene, Asta [1 ]
Gudaitis, Rimantas [1 ]
机构
[1] Kaunas Univ Technol, Inst Mat Sci, K Barsausko 59, LT-51423 Kaunas, Lithuania
来源
MOLECULES | 2025年 / 30卷 / 01期
关键词
PECVD; graphene synthesis; low-temperature growth; hydrogenated graphene; REVERSIBLE HYDROGENATION; VERTICAL GRAPHENE; RAMAN; CARBON; IDENTIFICATION;
D O I
10.3390/molecules30010033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 degrees C to as low as 400 degrees C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 degrees C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 degrees C showed increased defect density with an I(D)/I(G) ratio of similar to 1.5 and reduced I(2D)/I(G) (similar to 0.8). At 400 degrees C, the material transitioned to a highly hydrogenated amorphous carbon film, confirmed by photoluminescence (PL) in the Raman spectra. Atomic force microscopy (AFM) showed pristine graphene with a root mean square roughness (R-q) of 0.37 nm. By carefully adjusting PECVD synthesis parameters, it was possible to tune the surface roughness of hydrogenated graphene to levels close to that of pristine graphene or to achieve even smoother surfaces. Conductive AFM measurements revealed that hydrogenation could enhance graphene's contact current under specific conditions. The findings highlight the role of PECVD parameters in tailoring graphene's structural, morphological, and electronic properties for diverse applications. This work demonstrates a scalable, low-temperature approach to graphene synthesis, offering the potential for energy storage, sensing, and electronic devices requiring customized material properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition
    Hofmann, S
    Ducati, C
    Robertson, J
    Kleinsorge, B
    APPLIED PHYSICS LETTERS, 2003, 83 (01) : 135 - 137
  • [2] Low-temperature growth of carbon nanotube by plasma-enhanced chemical vapor deposition using nickel catalyst
    Ryu, KM
    Kang, MY
    Kim, YD
    Jeon, HT
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (6A): : 3578 - 3581
  • [3] Low-temperature growth of carbon nanotube by plasma-enhanced chemical vapor deposition using nickel catalyst
    Ryu, Kyoungmin
    Kang, Mihyun
    Kim, Yangdo
    Jeon, Heyongtag
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2003, 42 (6 A): : 3578 - 3581
  • [4] Low-Temperature Epitaxial Growth by Quiescent Plasma-Enhanced Chemical Vapor Deposition at Atmospheric Pressure
    Song, Chang-Hun
    Ryu, Hwa-Yeon
    Oh, Hoonjung
    Baik, Seung Jae
    Ko, Dae-Hong
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (12)
  • [5] LOW-TEMPERATURE DIAMOND DEPOSITION BY MICROWAVE PLASMA-ENHANCED CHEMICAL VAPOR-DEPOSITION
    LIOU, Y
    INSPEKTOR, A
    WEIMER, R
    MESSIER, R
    APPLIED PHYSICS LETTERS, 1989, 55 (07) : 631 - 633
  • [6] Low-temperature plasma-enhanced chemical vapor deposition of hard carbon films
    Vinogradov, AY
    Abramov, AS
    Orlov, KE
    Smirnov, AS
    VACUUM, 2004, 73 (01) : 131 - 135
  • [7] Low-temperature plasma-enhanced chemical vapor deposition of tungsten and tungsten nitride
    M. F. Bain
    B. M. Armstrong
    H. S. Gamble
    Journal of Materials Science: Materials in Electronics, 2003, 14 : 329 - 332
  • [8] Low-temperature plasma-enhanced chemical vapor deposition of tungsten and tungsten nitride
    Bain, MF
    Armstrong, BM
    Gamble, HS
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2003, 14 (5-7) : 329 - 332
  • [9] Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition
    Amama, Placidus B.
    Ogebule, Oluwaseyi
    Maschmann, Matthew R.
    Sands, Timothy D.
    Fisher, Timothy S.
    CHEMICAL COMMUNICATIONS, 2006, (27) : 2899 - 2901
  • [10] Low-temperature growth of carbon nanotubes by grid-inserted plasma-enhanced chemical vapor deposition
    Kojima, Yoshihiro
    Kishimoto, Shigeru
    Mizutani, Takashi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (12): : 8000 - 8002