Advancing Graphene Synthesis: Low-Temperature Growth and Hydrogenation Mechanisms Using Plasma-Enhanced Chemical Vapor Deposition

被引:0
|
作者
Meskinis, Sarunas [1 ]
Lazauskas, Algirdas [1 ]
Jankauskas, Sarunas [1 ]
Guobiene, Asta [1 ]
Gudaitis, Rimantas [1 ]
机构
[1] Kaunas Univ Technol, Inst Mat Sci, K Barsausko 59, LT-51423 Kaunas, Lithuania
来源
MOLECULES | 2025年 / 30卷 / 01期
关键词
PECVD; graphene synthesis; low-temperature growth; hydrogenated graphene; REVERSIBLE HYDROGENATION; VERTICAL GRAPHENE; RAMAN; CARBON; IDENTIFICATION;
D O I
10.3390/molecules30010033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 degrees C to as low as 400 degrees C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 degrees C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 degrees C showed increased defect density with an I(D)/I(G) ratio of similar to 1.5 and reduced I(2D)/I(G) (similar to 0.8). At 400 degrees C, the material transitioned to a highly hydrogenated amorphous carbon film, confirmed by photoluminescence (PL) in the Raman spectra. Atomic force microscopy (AFM) showed pristine graphene with a root mean square roughness (R-q) of 0.37 nm. By carefully adjusting PECVD synthesis parameters, it was possible to tune the surface roughness of hydrogenated graphene to levels close to that of pristine graphene or to achieve even smoother surfaces. Conductive AFM measurements revealed that hydrogenation could enhance graphene's contact current under specific conditions. The findings highlight the role of PECVD parameters in tailoring graphene's structural, morphological, and electronic properties for diverse applications. This work demonstrates a scalable, low-temperature approach to graphene synthesis, offering the potential for energy storage, sensing, and electronic devices requiring customized material properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Plasma-Enhanced Chemical Vapor Deposition of Graphene Nanostructures
    van der Laan, Timothy
    Kumar, Shailesh
    Ostrikova, Kostya
    ADVANCES IN NANODEVICES AND NANOFABRICATION, 2012, : 75 - 98
  • [22] Deposition mechanisms in plasma-enhanced chemical vapor deposition of titanium
    Itoh, T
    Chang, M
    Ellwanger, R
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (10) : 531 - 533
  • [23] Hydrogen-mediated low-temperature epitaxy of Si in plasma-enhanced chemical vapor deposition
    Kitagawa, T
    Kondo, M
    Matsuda, A
    APPLIED SURFACE SCIENCE, 2000, 159 : 30 - 34
  • [24] Film characteristics of low-temperature plasma-enhanced chemical vapor deposition silicon dioxide using tetraisocyanatesilane and oxygen
    Idris, Irman
    Sugiura, Osamu
    Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37 (12 A): : 6562 - 6568
  • [25] Film characteristics of low-temperature plasma-enhanced chemical vapor deposition silicon dioxide using tetraisocyanatesilane and oxygen
    Idris, I
    Sugiura, O
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (12A): : 6562 - 6568
  • [26] Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition
    Wei, Dacheng
    Peng, Lan
    Li, Menglin
    Mao, Hongying
    Niu, Tianchao
    Han, Cheng
    Chen, Wei
    Wee, Andrew Thye Shen
    ACS NANO, 2015, 9 (01) : 164 - 171
  • [27] Plasma-Enhanced Chemical Vapor Deposition of Acetylene on Codeposited Bimetal Catalysts Increasing Graphene Sheet Continuity Under Low-Temperature Growth Conditions
    Tracy, Joshua
    Zietz, Otto
    Olson, Samuel
    Jiao, Jun
    NANOSCALE RESEARCH LETTERS, 2019, 14 (01):
  • [28] Plasma-Enhanced Chemical Vapor Deposition of Acetylene on Codeposited Bimetal Catalysts Increasing Graphene Sheet Continuity Under Low-Temperature Growth Conditions
    Joshua Tracy
    Otto Zietz
    Samuel Olson
    Jun Jiao
    Nanoscale Research Letters, 2019, 14
  • [29] Modeling of plasma-enhanced chemical vapor deposition growth of graphene on cobalt substrates
    Hinkov, Ivaylo
    Pashova, Katya
    Farhat, Samir
    DIAMOND AND RELATED MATERIALS, 2019, 93 : 84 - 95
  • [30] Insights into the Mechanism for Vertical Graphene Growth by Plasma-Enhanced Chemical Vapor Deposition
    Sun, Jie
    Rattanasawatesun, Tanupong
    Tang, Penghao
    Bi, Zhaoxia
    Pandit, Santosh
    Lam, Lisa
    Wasen, Caroline
    Erlandsson, Malin
    Bokarewa, Maria
    Dong, Jichen
    Ding, Feng
    Xiong, Fangzhu
    Mijakovic, Ivan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) : 7152 - 7160