Global dynamics for the stochastic nonlinear beam equations on the four-dimensional torus

被引:0
|
作者
Chapouto, Andreia [1 ,2 ,3 ,4 ]
Li, Guopeng [3 ,4 ,5 ]
Liu, Ruoyuan [2 ,3 ,4 ,6 ]
机构
[1] Univ Paris Saclay, Lab Math Versailles, UVSQ, CNRS, F-78035 Versailles, France
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[4] Maxwell Inst Math Sci, Edinburgh EH9 3FD, Scotland
[5] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[6] Univ Bonn, Math Inst, Bonn, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
I-method; energy-critical; Gibbs measure; nonlinear beam equation; well-posedness; Wick renormalization; WELL-POSEDNESS; INVARIANT-MEASURES; WAVE-EQUATIONS; SCATTERING; MODEL;
D O I
10.1017/prm.2024.87
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all sub critical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I-method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
引用
收藏
页数:39
相关论文
共 50 条