Global dynamics for the stochastic nonlinear beam equations on the four-dimensional torus

被引:0
|
作者
Chapouto, Andreia [1 ,2 ,3 ,4 ]
Li, Guopeng [3 ,4 ,5 ]
Liu, Ruoyuan [2 ,3 ,4 ,6 ]
机构
[1] Univ Paris Saclay, Lab Math Versailles, UVSQ, CNRS, F-78035 Versailles, France
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[4] Maxwell Inst Math Sci, Edinburgh EH9 3FD, Scotland
[5] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[6] Univ Bonn, Math Inst, Bonn, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
I-method; energy-critical; Gibbs measure; nonlinear beam equation; well-posedness; Wick renormalization; WELL-POSEDNESS; INVARIANT-MEASURES; WAVE-EQUATIONS; SCATTERING; MODEL;
D O I
10.1017/prm.2024.87
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all sub critical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I-method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Dynamics of the four-dimensional spin glass in a magnetic field
    Parisi, G
    Ricci-Tersenghi, F
    Ruiz-Lorenzo, JJ
    PHYSICAL REVIEW B, 1998, 57 (21) : 13617 - 13623
  • [32] Four-dimensional structural dynamics of sheared collagen networks
    Arevalo, Richard C.
    Urbach, Jeffrey S.
    Blair, Daniel L.
    CHAOS, 2011, 21 (04)
  • [33] COMPUTING REEB DYNAMICS ON FOUR-DIMENSIONAL CONVEX POLYTOPES
    Chaidez, Julian
    Hutchings, Michael
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2021, 8 (04): : 403 - 445
  • [34] ON DYNAMICS IN A FOUR-DIMENSIONAL MODEL OF A SMALL OPEN ECONOMY
    Grausova, Maria
    Huzvar, Miroslav
    Zimka, Rudolf
    PROCEEDINGS OF THE 22ND INTERNATIONAL SCIENTIFIC CONFERENCE ON APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMICS (AMSE 2019), 2019, : 100 - 112
  • [35] Large deviations for stochastic nonlinear beam equations
    Zhang, Tusheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 248 (01) : 175 - 201
  • [36] Toward a classification of four-dimensional Painleve-type equations
    Kawakami, Hiroshi
    Nakamura, Akane
    Sakai, Hidetaka
    ALGEBRAIC AND GEOMETRIC ASPECTS OF INTEGRABLE SYSTEMS AND RANDOM MATRICES, 2013, 593 : 143 - 161
  • [37] On the evaluation of mobile target trajectory between four-dimensional computer tomography and four-dimensional cone-beam computer tomography
    Baley, Colton
    Kirby, Neil
    Wagner, Timothy
    Papanikolaou, Nikos
    Myers, Pamela
    Rasmussen, Karl
    Stathakis, Sotirios
    Saenz, Daniel
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (07): : 198 - 207
  • [38] Performance studies of four-dimensional cone beam computed tomography
    Qi, Zhihua
    Chen, Guang-Hong
    PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (20): : 6709 - 6721
  • [39] The stability of nonlinear Schrodinger equations on the d-dimensional torus
    Yang, Xue
    Zeng, Shengda
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 545 (02)
  • [40] The Curvature Tensor and the Einstein Equations for a Four-Dimensional Nonholonomic Distribution
    Krym, V. R.
    Petrov, N. N.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2008, 41 (03) : 256 - 265