Global dynamics for the stochastic nonlinear beam equations on the four-dimensional torus

被引:0
|
作者
Chapouto, Andreia [1 ,2 ,3 ,4 ]
Li, Guopeng [3 ,4 ,5 ]
Liu, Ruoyuan [2 ,3 ,4 ,6 ]
机构
[1] Univ Paris Saclay, Lab Math Versailles, UVSQ, CNRS, F-78035 Versailles, France
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3FD, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[4] Maxwell Inst Math Sci, Edinburgh EH9 3FD, Scotland
[5] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[6] Univ Bonn, Math Inst, Bonn, Germany
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
I-method; energy-critical; Gibbs measure; nonlinear beam equation; well-posedness; Wick renormalization; WELL-POSEDNESS; INVARIANT-MEASURES; WAVE-EQUATIONS; SCATTERING; MODEL;
D O I
10.1017/prm.2024.87
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all sub critical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I-method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] A four-dimensional analogy of torus links
    Hirose, S
    TOPOLOGY AND ITS APPLICATIONS, 2003, 133 (03) : 199 - 207
  • [2] Global Dynamics for the Two-dimensional Stochastic Nonlinear Wave Equations
    Gubinelli, Massimiliano
    Koch, Herbert
    Oh, Tadahiro
    Tolomeo, Leonardo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (21) : 16954 - 16999
  • [3] GLOBAL DYNAMICS AND BIFURCATIONS IN A FOUR-DIMENSIONAL REPLICATOR SYSTEM
    Wang, Yuashi
    Wu, Hong
    Ruan, Shigui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 259 - 271
  • [4] Stochastic nonlinear beam equations
    Zdzisław Brzeźniak
    Bohdan Maslowski
    Jan Seidler
    Probability Theory and Related Fields, 2005, 132 : 119 - 149
  • [5] Stochastic nonlinear beam equations
    Brzezniak, Z
    Maslowski, B
    Seidler, J
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (01) : 119 - 149
  • [6] Instabilities and degeneracies of the four-dimensional stochastic web
    Pekarsky, S
    RomKedar, V
    NONLINEARITY, 1997, 10 (04) : 949 - 963
  • [7] Dynamics of a Four-Dimensional Economic Model
    Moza, Gheorghe
    Brandibur, Oana
    Gaina, Ariana
    MATHEMATICS, 2023, 11 (04)
  • [8] Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model
    Florinski, V.
    NUMERICAL MODELING OF SPACE PLASMA FLOWS: ASTRONUM-2008, 2009, 406 : 3 - 8
  • [9] ON A SOLVABLE FOUR-DIMENSIONAL SYSTEM OF DIFFERENCE EQUATIONS
    Erdem, Ibrahim
    Yazlik, Yasin
    MATHEMATICA SLOVACA, 2024, 74 (04) : 929 - 946
  • [10] A four-dimensional beam-position monitor
    Ieiri, T
    Kawamoto, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 440 (02): : 330 - 337