Spatial deep convolutional neural networks

被引:0
|
作者
Wang, Qi [1 ]
Parker, Paul A. [1 ]
Lund, Robert [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Basis functions; Deep learning; Dependent data; Dropout layers; Keras; BAYESIAN-INFERENCE; NONSTATIONARY; MODELS; FIELDS;
D O I
10.1016/j.spasta.2025.100883
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spatial prediction problems often use Gaussian process models, which can be computationally burdensome in high dimensions. Specification of an appropriate covariance function for the model can be challenging when complex non-stationarities exist. Recent work has shown that pre-computed spatial basis functions and a feed-forward neural network can capture complex spatial dependence structures while remaining computationally efficient. This paper builds on this literature by tailoring spatial basis functions for use in convolutional neural networks. Through both simulated and real data, we demonstrate that this approach yields more accurate spatial predictions than existing methods. Uncertainty quantification is also considered.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Predicting enhancers with deep convolutional neural networks
    Min, Xu
    Zeng, Wanwen
    Chen, Shengquan
    Chen, Ning
    Chen, Ting
    Jiang, Rui
    BMC BIOINFORMATICS, 2017, 18
  • [32] Theory of deep convolutional neural networks: Downsampling
    Zhou, Ding-Xuan
    NEURAL NETWORKS, 2020, 124 : 319 - 327
  • [33] ImageNet Classification with Deep Convolutional Neural Networks
    Krizhevsky, Alex
    Sutskever, Ilya
    Hinton, Geoffrey E.
    COMMUNICATIONS OF THE ACM, 2017, 60 (06) : 84 - 90
  • [34] Structured Pruning of Deep Convolutional Neural Networks
    Anwar, Sajid
    Hwang, Kyuyeon
    Sung, Wonyong
    ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
  • [35] Deep convolutional neural networks in the face of caricature
    Matthew Q. Hill
    Connor J. Parde
    Carlos D. Castillo
    Y. Ivette Colón
    Rajeev Ranjan
    Jun-Cheng Chen
    Volker Blanz
    Alice J. O’Toole
    Nature Machine Intelligence, 2019, 1 : 522 - 529
  • [36] Deep Convolutional Neural Networks on Cartoon Functions
    Grohs, Philipp
    Wiatowski, Thomas
    Bolcskei, Helmut
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1163 - 1167
  • [37] Elastography mapped by deep convolutional neural networks
    Liu, DongXu
    Kruggel, Frithjof
    Sun, LiZhi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (07) : 1567 - 1574
  • [38] Very Deep Convolutional Neural Networks for LVCSR
    Bi, Mengxiao
    Qian, Yanmin
    Yu, Kai
    16TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2015), VOLS 1-5, 2015, : 3259 - 3263
  • [39] Elastography mapped by deep convolutional neural networks
    LIU DongXu
    KRUGGEL Frithjof
    SUN LiZhi
    Science China(Technological Sciences), 2021, 64 (07) : 1567 - 1574
  • [40] Universal Consistency of Deep Convolutional Neural Networks
    Lin, Shao-Bo
    Wang, Kaidong
    Wang, Yao
    Zhou, Ding-Xuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4610 - 4617