Spatial deep convolutional neural networks

被引:0
|
作者
Wang, Qi [1 ]
Parker, Paul A. [1 ]
Lund, Robert [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Basis functions; Deep learning; Dependent data; Dropout layers; Keras; BAYESIAN-INFERENCE; NONSTATIONARY; MODELS; FIELDS;
D O I
10.1016/j.spasta.2025.100883
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spatial prediction problems often use Gaussian process models, which can be computationally burdensome in high dimensions. Specification of an appropriate covariance function for the model can be challenging when complex non-stationarities exist. Recent work has shown that pre-computed spatial basis functions and a feed-forward neural network can capture complex spatial dependence structures while remaining computationally efficient. This paper builds on this literature by tailoring spatial basis functions for use in convolutional neural networks. Through both simulated and real data, we demonstrate that this approach yields more accurate spatial predictions than existing methods. Uncertainty quantification is also considered.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions
    Di Zhu
    Yu Liu
    Xin Yao
    Manfred M. Fischer
    GeoInformatica, 2022, 26 : 645 - 676
  • [12] Deep Anchored Convolutional Neural Networks
    Huang, Jiahui
    Dwivedi, Kshitij
    Roig, Gemma
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 639 - 647
  • [13] Deep Unitary Convolutional Neural Networks
    Chang, Hao-Yuan
    Wang, Kang L.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT II, 2021, 12892 : 170 - 181
  • [14] DEEP CONVOLUTIONAL NEURAL NETWORKS FOR LVCSR
    Sainath, Tara N.
    Mohamed, Abdel-rahman
    Kingsbury, Brian
    Ramabhadran, Bhuvana
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 8614 - 8618
  • [15] Universality of deep convolutional neural networks
    Zhou, Ding-Xuan
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 787 - 794
  • [16] A Review on Deep Convolutional Neural Networks
    Aloysius, Neena
    Geetha, M.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 588 - 592
  • [17] Convergence of deep convolutional neural networks
    Xu, Yuesheng
    Zhang, Haizhang
    NEURAL NETWORKS, 2022, 153 : 553 - 563
  • [18] Fusion of Deep Convolutional Neural Networks
    Suchy, Robert
    Ezekiel, Soundararajan
    Cornacchia, Maria
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [19] Correction to: Spatial regression graph convolutional neural networks: A deep learning paradigm for spatial multivariate distributions
    Di Zhu
    Yu Liu
    Xin Yao
    Manfred M. Fischer
    GeoInformatica, 2023, 27 : 641 - 642
  • [20] Classification of multiple motor imagery using deep convolutional neural networks and spatial filters
    Olivas-Padilla, Brenda E.
    Chacon-Murguia, Mario, I
    APPLIED SOFT COMPUTING, 2019, 75 : 461 - 472