The chromosome-level genome assembly of an endangered herb Bergenia scopulosa provides insights into local adaptation and genomic vulnerability under climate change

被引:0
|
作者
Yang, Yi-Xin [1 ,2 ]
Wang, Meng [1 ]
Wu, Xuan-Ye [1 ]
Zhou, Ya-Ni [1 ]
Qiu, Jie [1 ]
Cai, Xia [1 ]
Li, Zhong-Hu [1 ]
机构
[1] Northwest Univ, Coll Life Sci, Key Lab Resource Biol & Biotechnol Western China, Prov Key Lab Biotechnol,Minist Educ, 229 Northern Taibai Rd, Xian 710069, Peoples R China
[2] Shaanxi Univ Chinese Med, Med Expt Ctr, Xianyang 712046, Peoples R China
来源
GIGASCIENCE | 2024年 / 13卷
基金
中国国家自然科学基金;
关键词
Bergenia scopulosa; genome assembly; local adaptation; genomic vulnerability; conservation; PHYLOGENETIC ANALYSIS; POPULATION HISTORY; TEMPERATURE STRESS; DESATURASE GENE; COLD TOLERANCE; ALIGNMENT; ANNOTATION; TOOL; ARABIDOPSIS; PLANTS;
D O I
10.1093/gigascience/giae091
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Global climate change poses severe threats to biodiversity and ecosystem stability. Rapid climate oscillations potentially lead to species geographic range shifts, population declines, and even extinctions. The rare and endangered species, being critical components of regional biodiversity, hold the key to understanding local adaptation and evolutionary processes shaping species distributions. Therefore, assessing the evolutionary mechanisms of local adaptation and population vulnerability under climate change is crucial for developing conservation strategies of endangered species. Results: In this study, we assembled a high-quality, chromosome-level genome of the rare and endangered herb Bergenia scopulosa in the Qinling Mountains in East Asia and resequenced 37 individual genomes spanning its entire geographic distributional ranges. By integrating population genetics, landscape genomics, and climate datasets, a substantial number of adaptive single-nucleotide polymorphism loci associated with climate variables were identified. The genotype-environment association analysis showed that some cold-tolerant genes have played pivotal roles in cold environmental adaptation of B. scopulosa. These findings are further corroborated through evolutionary analysis of gene family and quantitative PCR validation. Population genomic analysis revealed 2 distinct genetic lineages in B. scopulosa. The western lineage showed higher genomic vulnerability and more rare cold-tolerance alleles, suggesting its heightened sensitivity to impending climate shifts, and should be given priority conservation in the management practices. Conclusions: These findings provide novel insights into local adaptation and genomic vulnerability of B. scopulosa under climate change in the Qinling Mountains in East Asia. Additionally, the study also offers valuable guidance for formulating conservation strategies for the rare and endangered plants.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The chromosome-level genome assembly of Fraxinus americana provides insights into the evolution of Oleaceae plants
    Zhang, Hua
    Li, Zhiqi
    Wang, Maoliang
    Yang, Yipeng
    Wang, Yongge
    Nie, Qiufeng
    Liang, Fang
    Qin, Helan
    Zhang, Zhao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [32] Chromosome-level genome assembly of the Verasper variegatus provides insights into left eye migration
    Xu, Xi-wen
    Chen, Zhangfan
    Liu, Changlin
    Xu, Wenteng
    Xu, Hao
    Chen, Songlin
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [33] The first chromosome-level Fallopia multiflora genome assembly provides insights into stilbene biosynthesis
    Zhao, Yujiao
    Yang, Zhengyang
    Zhang, Zhongren
    Yin, Minzhen
    Chu, Shanshan
    Tong, Zhenzhen
    Qin, Yuejian
    Zha, Liangping
    Fang, Qingying
    Yuan, Yuan
    Huang, Luqi
    Peng, Huasheng
    HORTICULTURE RESEARCH, 2023, 10 (05)
  • [34] A chromosome-level genome assembly provides insights into the environmental adaptability and outbreaks of Chlorops oryzae
    Zhou, Ailin
    Huang, Cong
    Li, Yi
    Li, Xinwen
    Zhang, Zhengbing
    He, Hualiang
    Ding, Wenbing
    Xue, Jin
    Li, Youzhi
    Qiu, Lin
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [35] The chromosome-level genome assembly of Gentiana dahurica (Gentianaceae) provides insights into gentiopicroside biosynthesis
    Li, Ting
    Yu, Xi
    Ren, Yumeng
    Kang, Minghui
    Yang, Wenjie
    Feng, Landi
    Hu, Quanjun
    DNA RESEARCH, 2022, 29 (02)
  • [36] Chromosome-level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis
    Zhao, Xiaolan
    Hu, Xiaodi
    OuYang, Kunxi
    Yang, Jing
    Que, Qingmin
    Long, Jianmei
    Zhang, Jianxia
    Zhang, Tong
    Wang, Xue
    Gao, Jiayu
    Hu, Xinquan
    Yang, Shuqi
    Zhang, Lisu
    Li, Shufen
    Gao, Wujun
    Li, Benping
    Jiang, Wenkai
    Nielsen, Erik
    Chen, Xiaoyang
    Peng, Changcao
    PLANT JOURNAL, 2022, 109 (04): : 891 - 908
  • [37] Chromosome-Level Genome Assembly of Bupleurum chinense DC Provides Insights Into the Saikosaponin Biosynthesis
    Zhang, Quanfang
    Li, Min
    Chen, Xueyan
    Liu, Guoxia
    Zhang, Zhe
    Tan, Qingqing
    Hu, Yue
    Fan, Yangyang
    Liu, Yanyan
    Zhu, Tongshan
    Yang, Xue
    Yue, Mingming
    Bu, Xun
    Zhang, Yongqing
    FRONTIERS IN GENETICS, 2022, 13
  • [38] A chromosome-level genome assembly of Ostrea denselamellosa provides initial insights into its evolution
    Dong, Zhen
    Bai, Yitian
    Liu, Shikai
    Yu, Hong
    Kong, Lingfeng
    Du, Shaojun
    Li, Qi
    GENOMICS, 2023, 115 (02)
  • [39] A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis
    Gao, Yong
    Zhang, Yanan
    Feng, Chen
    Chu, Honglong
    Feng, Chao
    Wang, Haibo
    Wu, Lifang
    Yin, Si
    Liu, Chao
    Chen, Huanhuan
    Li, Zhumei
    Zou, Zhengrong
    Tang, Lizhou
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1002 - 1011
  • [40] Genomic insights into local adaptation and vulnerability of Quercus longinux to climate change
    Sun, Pei-Wei
    Chang, Jui-Tse
    Luo, Min-Xin
    Liao, Pei-Chun
    BMC PLANT BIOLOGY, 2024, 24 (01)