A chromosome-level genome assembly provides insights into the environmental adaptability and outbreaks of Chlorops oryzae

被引:0
|
作者
Zhou, Ailin [1 ,2 ]
Huang, Cong [3 ]
Li, Yi [4 ]
Li, Xinwen [4 ]
Zhang, Zhengbing [4 ]
He, Hualiang [1 ]
Ding, Wenbing [1 ,2 ]
Xue, Jin [1 ]
Li, Youzhi [1 ,2 ]
Qiu, Lin [1 ]
机构
[1] Hunan Agr Univ, Coll Plant Protect, Hunan Prov Key Lab Biol & Control Plant Dis & Ins, Changsha 410128, Peoples R China
[2] Hunan Prov Engn & Technol Res Ctr Biopesticide &, Changsha 410128, Peoples R China
[3] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Minist Agr,Shenzhen Branch, Genome Anal Lab,Guangdong Lab Lingnan Modern Agr, Shenzhen 518120, Peoples R China
[4] Agr & Rural Dev Hunan Prov, Plant Protect & Inspect Stn, Changsha 410005, Peoples R China
关键词
JUVENILE-HORMONE SYNTHESIS; GENE-EXPRESSION; INSECTICIDE RESISTANCE; SIGNALING PATHWAY; RNA; SEQUENCE; IDENTIFICATION; TRANSDUCTION; TEMPERATURE; PEROXIDASE;
D O I
10.1038/s42003-022-03850-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A chromosome-level genome assembly for the rice pest, Chlorops oryzae, pinpoints molecular pathways that might contribute toward increased outbreaks for this important crop pest. Chlorops oryzae is a pest of rice that has caused severe damage to crops in major rice-growing areas in recent years. We generated a 447.60 Mb high-quality chromosome-level genome with contig and scaffold N50 values of 1.17 Mb and 117.57 Mb, respectively. Hi-C analysis anchored 93.22% scaffolds to 4 chromosomes. The relatively high expression level of Heat Shock Proteins (HSPs) and antioxidant genes in response to thermal stress suggests these genes may play a role in the environmental adaptability of C. oryzae. The identification of multiple pathways that regulate reproductive development (juvenile hormone, 20-hydroxyecdsone, and insulin signaling pathways) provides evidence that these pathways also play an important role in vitellogenesis and thus insect population maintenance. These findings identify possible reasons for the increased frequency of outbreaks of C. oryzae in recent years. Our chromosome-level genome assembly may provide a basis for further genetic studies of C. oryzae, and promote the development of novel, sustainable strategies to control this pest.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A chromosome-level genome assembly provides insights into the environmental adaptability and outbreaks of Chlorops oryzae
    Ailin Zhou
    Cong Huang
    Yi Li
    Xinwen Li
    Zhengbing Zhang
    Hualiang He
    Wenbing Ding
    Jin Xue
    Youzhi Li
    Lin Qiu
    Communications Biology, 5
  • [2] Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution
    Shingate, Prashant
    Ravi, Vydianathan
    Prasad, Aravind
    Tay, Boon-Hui
    Garg, Kritika M.
    Chattopadhyay, Balaji
    Yap, Laura-Marie
    Rheindt, Frank E.
    Venkatesh, Byrappa
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution
    Prashant Shingate
    Vydianathan Ravi
    Aravind Prasad
    Boon-Hui Tay
    Kritika M. Garg
    Balaji Chattopadhyay
    Laura-Marie Yap
    Frank E. Rheindt
    Byrappa Venkatesh
    Nature Communications, 11
  • [4] Chromosome-level genome assembly of Gynostemma pentaphyllum provides insights into gypenoside biosynthesis
    Huang, Ding
    Ming, Ruhong
    Xu, Shiqiang
    Wang, Jihua
    Yao, Shaochang
    Li, Liangbo
    Huang, Rongshao
    Tan, Yong
    DNA RESEARCH, 2021, 28 (05) : 1 - 9
  • [5] Chromosome-level reference genome assembly provides insights into the evolution of Pennisetum alopecuroides
    Teng, Ke
    Guo, Qiang
    Liu, Lingyun
    Guo, Yidi
    Xu, Yue
    Hou, Xincun
    Teng, Wenjun
    Zhang, Hui
    Zhao, Chunqiao
    Yue, Yuesen
    Wen, Haifeng
    Wu, Juying
    Fan, Xifeng
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [6] Chromosome-level genome assembly of Lethenteron reissneri provides insights into lamprey evolution
    Zhu, Ting
    Li, Yongxin
    Pang, Yue
    Han, Yinglun
    Li, Jun
    Wang, Zhongkai
    Liu, Xin
    Li, Haorong
    Hua, Yishan
    Jiang, Hui
    Teng, Hongming
    Quan, Jian
    Liu, Yu
    Geng, Ming
    Li, Meiao
    Hui, Fan
    Liu, Jinzhao
    Qiu, Qiang
    Li, Qingwei
    Ren, Yandong
    MOLECULAR ECOLOGY RESOURCES, 2021, 21 (02) : 448 - 463
  • [7] Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution
    Fan, Huizhong
    Wu, Qi
    Wei, Fuwen
    Yang, Fengtang
    Ng, Bae Ling
    Hu, Yibo
    GENOME BIOLOGY, 2019, 20 (01)
  • [8] Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution
    Huizhong Fan
    Qi Wu
    Fuwen Wei
    Fengtang Yang
    Bee Ling Ng
    Yibo Hu
    Genome Biology, 20
  • [9] Chromosome-Level Genome Assembly of Acanthogobius ommaturus Provides Insights Into Evolution and Lipid Metabolism
    Pan, Yu
    Sun, Zhicheng
    Gao, Tianxiang
    Zhao, Linlin
    Song, Na
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [10] A chromosome-level genome assembly of the Henosepilachna vigintioctomaculata provides insights into the evolution of ladybird beetles
    Zhu, Wenbo
    Chi, Shengqi
    Wang, Yanchun
    Li, Haorong
    Wang, Zhongkai
    Gu, Songdong
    Sun, Ting
    Xiang, Hui
    You, Ping
    Ren, Yandong
    DNA RESEARCH, 2023, 30 (01)