Integers represented by Lucas sequences

被引:0
|
作者
Hajdu, Lajos [1 ,2 ]
Tijdeman, Rob [3 ]
机构
[1] Univ Debrecen, Inst Math, POB 400, H-4002 Debrecen, Hungary
[2] HUN REN Equat Funct Curves & Their Applicat Res Gr, Debrecen, Hungary
[3] Leiden Univ, Math Inst, Postbus 9512, NL-2300 RA Leiden, Netherlands
来源
RAMANUJAN JOURNAL | 2025年 / 66卷 / 04期
关键词
Lucas sequences; Integers represented by forms; Fibonacci polynomials; LOGARITHMS; DIVISORS; FORMS; TERM;
D O I
10.1007/s11139-025-01041-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the sets of integers which are n-th terms of Lucas sequences. We establish lower- and upper bounds for the size of these sets. These bounds are sharp for n sufficiently large. We also develop bounds on the growth order of the terms of Lucas sequences that are independent of the parameters of the sequence, which is a new feature.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Palindromes in Lucas Sequences
    Florian Luca
    Monatshefte für Mathematik, 2003, 138 : 209 - 223
  • [22] On the discriminator of Lucas sequences
    Faye, Bernadette
    Luca, Florian
    Moree, Pieter
    ANNALES MATHEMATIQUES DU QUEBEC, 2019, 43 (01): : 51 - 71
  • [23] On generalized Lucas sequences
    Wang, Qiang
    COMBINATORICS AND GRAPHS, 2010, 531 : 127 - 141
  • [24] Palindromes in Lucas sequences
    Luca, F
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (03): : 209 - 223
  • [25] SOME SEQUENCES OF INTEGERS
    CAMERON, PJ
    DISCRETE MATHEMATICS, 1989, 75 (1-3) : 89 - 102
  • [26] CERTAIN SEQUENCES OF INTEGERS
    THANIGASALAM, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 200 : 199 - 205
  • [27] THE GCD SEQUENCES OF THE ALTERED LUCAS SEQUENCES
    Koken, Fikri
    ANNALES MATHEMATICAE SILESIANAE, 2020, 34 (02) : 222 - 240
  • [28] LUCAS SEQUENCES AND REPDIGITS
    Hashim, Hayder Raheem
    Tengely, Szabolcs
    MATHEMATICA BOHEMICA, 2022, 147 (03): : 301 - 318
  • [29] Divisors of Lucas sequences
    Somer, L
    FIBONACCI QUARTERLY, 1997, 35 (04): : 376 - 376
  • [30] On squares in Lucas sequences
    Bremner, A.
    Tzanakis, N.
    JOURNAL OF NUMBER THEORY, 2007, 124 (02) : 511 - 520