FMTT : Fused Multi-head Transformer with Tensor-compression for 3D Point Clouds Detection on Edge Devices

被引:0
|
作者
Wei, Zikun [1 ]
Wang, Tingting [1 ]
Ding, Chenchen [1 ]
Wang, Bohan [1 ]
Guan, Ziyi [1 ]
Huang, Hantao [1 ]
Yu, Hao [1 ]
机构
[1] Southern Univ Sci & Technol, Sch Microelect, Shenzhen, Peoples R China
关键词
Deep Learning; 3D Object Detection; Tensor Compression;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The real-time detection of 3D objects represents a grand challenge on edge devices. Existing 3D point clouds models are over-parameterized with heavy computation load. This paper proposes a highly compact model for 3D point clouds detection using tensor-compression. Compared to conventional methods, we propose a fused multi-head transformer tensor-compression (FMTT) to achieve both compact size yet with high accuracy. The FMTT leverages different ranks to extract both high and low-level features and then fuses them together to improve the accuracy. Experiments on the KITTI dataset show that the proposed FMTT can achieve 6.04x smaller than the uncompressed model from 55.09MB to 9.12MB such that the compressed model can be implemented on edge devices. It also achieves 2.62% improved accuracy in easy mode and 0.28% improved accuracy in hard mode.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Transformer for 3D Point Clouds
    Wang, Jiayun
    Chakraborty, Rudrasis
    Yu, Stella X.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4419 - 4431
  • [2] Weakly Supervised Point Clouds Transformer for 3D Object Detection
    Tang, Zuojin
    Sun, Bo
    Ma, Tongwei
    Li, Daosheng
    Xu, Zhenhui
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3948 - 3955
  • [3] Multi-Head Self-Attention for 3D Point Cloud Classification
    Gao, Xue-Yao
    Wang, Yan-Zhao
    Zhang, Chun-Xiang
    Lu, Jia-Qi
    IEEE Access, 2021, 9 : 18137 - 18147
  • [4] Edge Detection in 3D Point Clouds Using Digital Images
    Dolapsaki, Maria Melina
    Georgopoulos, Andreas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (04)
  • [5] Multi-Head Self-Attention for 3D Point Cloud Classification
    Gao, Xue-Yao
    Wang, Yan-Zhao
    Zhang, Chun-Xiang
    Lu, Jia-Qi
    IEEE ACCESS, 2021, 9 : 18137 - 18147
  • [6] SWFormer: Sparse Window Transformer for 3D Object Detection in Point Clouds
    Sun, Pei
    Tan, Mingxing
    Wang, Weiyue
    Liu, Chenxi
    Xia, Fei
    Leng, Zhaoqi
    Anguelov, Dragomir
    COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 426 - 442
  • [7] 3D detection transformer: Set prediction of objects using point clouds
    Thon, Tan
    Lim, Joanne Mun-Yee
    Jinn, Foo Ji
    Muniandy, Ramachandran
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 236
  • [8] FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds
    Biao Liu
    Bihao Tian
    Hengyang Wang
    Junchao Qiao
    Zhi Wang
    Neural Processing Letters, 2022, 54 : 5063 - 5078
  • [9] FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds
    Liu, Biao
    Tian, Bihao
    Wang, Hengyang
    Qiao, Junchao
    Wang, Zhi
    NEURAL PROCESSING LETTERS, 2022, 54 (06) : 5063 - 5078
  • [10] Clusterformer: Cluster-based Transformer for 3D Object Detection in Point Clouds
    Pei, Yu
    Zhao, Xian
    Li, Hao
    Ma, Jingyuan
    Zhang, Jingwei
    Pu, Shiliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6641 - 6650