3D detection transformer: Set prediction of objects using point clouds

被引:0
|
作者
Thon, Tan [1 ,2 ]
Lim, Joanne Mun-Yee [1 ]
Jinn, Foo Ji [1 ]
Muniandy, Ramachandran [2 ]
机构
[1] Monash Univ Malaysia, Sch Engn, Dept Elect & Robot Engn, Jalan Lagoon Selatan, Subang Jaya 47500, Selangor, Malaysia
[2] Asia Mobil Technol SDN BHD, Tower 3,Jalan Pengaturcara U1-51A, Shah Alam 40150, Selangor, Malaysia
关键词
Deep learning; 3D object detection; Point clouds; Transformers; Single-stage detector;
D O I
10.1016/j.cviu.2023.103808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection in 3D scenes rely on two main methods: detection based on proposals (two-stage detectors) or detections based on anchors (single-stage detectors), similar to approaches for object detection in 2D. In this paper, we propose the 3DeTR framework that produces 3D detections without the use of anchors or proposals, allowing training of the entire neural network in an end-to-end manner. Raw point cloud scenes are augmented and input into distance-and-reflectiveness-based feature extractor to produce representative points. Then, a transformer encoder-decoder module learns the local object relations and global context to generate parallel detections, which are then passed to a set-based loss function to map predictions to the set of ground truth labels uniquely. The model's architecture produces 3D detections by regressing directly with the set of ground truths without the need for anchors or proposals, which are bottlenecks for object detection performances. We tested the framework on the KITTI Vision Benchmark Suite 3D object detection dataset, achieving results on par with the state-of-the-art: 80.37 AP on Cars (Moderate) class and 47.92 AP on Pedestrians (Moderate) class.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds
    He, Chenhang
    Li, Ruihuang
    Li, Shuai
    Zhang, Lei
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 8407 - 8417
  • [2] Transformer for 3D Point Clouds
    Wang, Jiayun
    Chakraborty, Rudrasis
    Yu, Stella X.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (08) : 4419 - 4431
  • [3] DVST: Deformable Voxel Set Transformer for 3D Object Detection from Point Clouds
    Ning, Yaqian
    Cao, Jie
    Bao, Chun
    Hao, Qun
    [J]. REMOTE SENSING, 2023, 15 (23)
  • [4] Change detection of urban objects using 3D point clouds: A review
    Stilla, Uwe
    Xu, Yusheng
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 197 : 228 - 255
  • [5] Weakly Supervised Point Clouds Transformer for 3D Object Detection
    Tang, Zuojin
    Sun, Bo
    Ma, Tongwei
    Li, Daosheng
    Xu, Zhenhui
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3948 - 3955
  • [6] SWFormer: Sparse Window Transformer for 3D Object Detection in Point Clouds
    Sun, Pei
    Tan, Mingxing
    Wang, Weiyue
    Liu, Chenxi
    Xia, Fei
    Leng, Zhaoqi
    Anguelov, Dragomir
    [J]. COMPUTER VISION, ECCV 2022, PT X, 2022, 13670 : 426 - 442
  • [7] Efficient 3D Objects Recognition Using Multifoveated Point Clouds
    Oliveira, Fabio F.
    Souza, Anderson A. S.
    Fernandes, Marcelo A. C.
    Gomes, Rafael B.
    Goncalves, Luiz M. G.
    [J]. SENSORS, 2018, 18 (07)
  • [8] PQ-Transformer: Jointly Parsing 3D Objects and Layouts From Point Clouds
    Chen, Xiaoxue
    Zhao, Hao
    Zhou, Guyue
    Zhang, Ya-Qin
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 2519 - 2526
  • [9] Clusterformer: Cluster-based Transformer for 3D Object Detection in Point Clouds
    Pei, Yu
    Zhao, Xian
    Li, Hao
    Ma, Jingyuan
    Zhang, Jingwei
    Pu, Shiliang
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6641 - 6650
  • [10] Template Matching for 3D Objects in Large Point Clouds Using DBMS
    Varga, Daniel
    Szalai-Gindl, Janos Mark
    Formanek, Bence
    Vaderna, Peter
    Dobos, Laszlo
    Laki, Sandor
    [J]. IEEE ACCESS, 2021, 9 : 76894 - 76907