FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds

被引:0
|
作者
Biao Liu
Bihao Tian
Hengyang Wang
Junchao Qiao
Zhi Wang
机构
[1] Beijing Jiaotong University,School of Electrical Engineering
[2] Beijing Jiaotong University,School of Science
来源
Neural Processing Letters | 2022年 / 54卷
关键词
Computer vision; Point cloud; Neural networks; Object detection; Voxelization;
D O I
暂无
中图分类号
学科分类号
摘要
3D object detection from lidar point cloud has an important role in the environment sensing system of autonomous driving vehicles. In this paper, we propose two modules for object detection works by more detailed voxel initial information extraction and full fusion of context information. Additionally, we extract density information as the initial feature of the voxels and fully confuse the coordinate and density information with a point-based method to reduce the loss of original data caused by voxelization. Second, we extract the voxel features with a backbone neural network based on 3D sparse convolution. We propose a Cross-connected Region Proposal Network to integrate multiscale and multidepth regional features and to obtain high-quality 3D proposal regions. In addition, we extend the target generation strategy in the anchor-based 3D object detection algorithm, which stabilizes the network performance for multiple objections. Our modules can be flexibly applied to state-of-the-art models and effectively improves the network performance, which proves the effectiveness of the modules that we proposed.
引用
收藏
页码:5063 / 5078
页数:15
相关论文
共 50 条
  • [1] FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds
    Liu, Biao
    Tian, Bihao
    Wang, Hengyang
    Qiao, Junchao
    Wang, Zhi
    [J]. NEURAL PROCESSING LETTERS, 2022, 54 (06) : 5063 - 5078
  • [2] EFNet: enhancing feature information for 3D object detection in LiDAR point clouds
    Meng, Xin
    Zhou, Yuan
    Du, Kaiyue
    Ma, Jun
    Meng, Jin
    Kumar, Aakash
    Lv, Jiahang
    Kim, Jonghyuk
    Wang, Shifeng
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2024, 41 (04) : 739 - 748
  • [3] PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds
    Li, Jinyu
    Luo, Chenxu
    Yang, Xiaodong
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17567 - 17576
  • [4] 3D MSSD: A multilayer spatial structure 3D object detection network for mobile LiDAR point clouds
    Wang, Zongyue
    Xia, Qiming
    Du, Jing
    Huang, Shangfeng
    Su, Jinhe
    Marcato Junior, Jose
    Li, Jonathan
    Cai, Guorong
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [5] Relation Graph Network for 3D Object Detection in Point Clouds
    Feng, Mingtao
    Gilani, Syed Zulqarnain
    Wang, Yaonan
    Zhang, Liang
    Mian, Ajmal
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 92 - 107
  • [6] Enhanced Vote Network for 3D Object Detection in Point Clouds
    Zhong, Min
    Zeng, Gang
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6624 - 6631
  • [7] Learning Deformable Network for 3D Object Detection on Point Clouds
    Zhang, Wanyi
    Fu, Xiuhua
    Li, Wei
    [J]. MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [8] Optimisation of the PointPillars network for 3D object detection in point clouds
    Stanisz, Joanna
    Lis, Konrad
    Kryjak, Tomasz
    Gorgon, Marek
    [J]. 2020 SIGNAL PROCESSING - ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2020, : 122 - 127
  • [9] A Hierarchical Graph Network for 3D Object Detection on Point Clouds
    Chen, Jintai
    Lei, Biwen
    Song, Qingyu
    Ying, Haochao
    Chen, Danny Z.
    Wu, Jian
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 389 - 398
  • [10] SIEV-Net: A Structure-Information Enhanced Voxel Network for 3D Object Detection From LiDAR Point Clouds
    Yu, Chuanbo
    Lei, Jianjun
    Peng, Bo
    Shen, Haifeng
    Huang, Qingming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60