Using negative controls to identify causal effects with invalid instrumental variables

被引:0
|
作者
Dukes, O. [1 ]
Richardson, D. B. [2 ]
Shahn, Z. [3 ]
Robins, J. M. [4 ]
Tchetgen, E. J. Tchetgen [5 ]
机构
[1] Univ Ghent, Dept Appl Math Stat & Comp Sci, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Univ Calif Irvine, Dept Environm & Occupat Hlth, 653 E Peltason Dr, Irvine, CA 92697 USA
[3] CUNY, Dept Epidemiol & Biostat, 55 W 125th St, New York, NY 10027 USA
[4] Harvard T H Chan Sch Publ Hlth, Dept Epidemiol, 677 Huntington Ave, Boston, MA 02115 USA
[5] Univ Penn, Wharton Sch, Dept Stat & Data Sci, 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Causal inference; Semiparametric theory; Unmeasured confounding; ROBUST ESTIMATION;
D O I
10.1093/biomet/asae064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many proposals for the identification of causal effects require an instrumental variable that satisfies strong, untestable unconfoundedness and exclusion restriction assumptions. In this paper, we show how one can potentially identify causal effects under violations of these assumptions by harnessing a negative control population or outcome. This strategy allows one to leverage subpopulations for whom the exposure is degenerate, and requires that the instrument-outcome association satisfies a certain parallel trend condition. We develop semiparametric efficiency theory for a general instrumental variable model, and obtain a multiply robust, locally efficient estimator of the average treatment effect in the treated. The utility of the estimators is demonstrated in simulation studies and an analysis of the Life Span Study.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Identification of the Direction of a Causal Effect by Instrumental Variables
    Kline, Brendan
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2016, 34 (02) : 176 - 184
  • [32] Conditions Sufficient to Infer Causal Relationships Using Instrumental Variables and Observational Data
    Henry L. Bryant
    David A. Bessler
    Computational Economics, 2016, 48 : 29 - 57
  • [33] Conditions Sufficient to Infer Causal Relationships Using Instrumental Variables and Observational Data
    Bryant, Henry L.
    Bessler, David A.
    COMPUTATIONAL ECONOMICS, 2016, 48 (01) : 29 - 57
  • [34] Prediction of causal genes at GWAS loci with pleiotropic gene regulatory effects using sets of correlated instrumental variables
    Khan, Mariyam
    Ludl, Adriaan-Alexander
    Bankier, Sean
    Bjorkegren, Johan L. M.
    Michoel, Tom
    PLOS GENETICS, 2024, 20 (11):
  • [35] Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships
    Rassen, Jeremy A.
    Brookhart, M. Alan
    Glynn, Robert J.
    Mittleman, Murray A.
    Schneeweiss, Sebastian
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2009, 62 (12) : 1226 - 1232
  • [36] Identification and estimation of causal peer effects using double negative controls for unmeasured network confounding
    Egami, Naoki
    Tchetgen, Eric J. Tchetgen
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2024, 86 (02) : 487 - 511
  • [37] Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization
    Kang, Hyunseung
    Zhang, Anru
    Cai, T. Tony
    Small, Dylan S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (513) : 132 - 144
  • [38] Causal mediation analysis in instrumental-variables regressions
    Dippel, Christian
    Ferrara, Andreas
    Heblich, Stephan
    STATA JOURNAL, 2020, 20 (03): : 613 - 626
  • [39] Instrumental Variables Analysis and Mendelian Randomization for Causal Inference
    Moodie, Erica E. M.
    le Cessie, Saskia
    JOURNAL OF INFECTIOUS DISEASES, 2024,
  • [40] Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
    Roy S. Zawadzki
    Joshua D. Grill
    Daniel L. Gillen
    BMC Medical Research Methodology, 23