共 50 条
Using negative controls to identify causal effects with invalid instrumental variables
被引:0
|作者:
Dukes, O.
[1
]
Richardson, D. B.
[2
]
Shahn, Z.
[3
]
Robins, J. M.
[4
]
Tchetgen, E. J. Tchetgen
[5
]
机构:
[1] Univ Ghent, Dept Appl Math Stat & Comp Sci, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Univ Calif Irvine, Dept Environm & Occupat Hlth, 653 E Peltason Dr, Irvine, CA 92697 USA
[3] CUNY, Dept Epidemiol & Biostat, 55 W 125th St, New York, NY 10027 USA
[4] Harvard T H Chan Sch Publ Hlth, Dept Epidemiol, 677 Huntington Ave, Boston, MA 02115 USA
[5] Univ Penn, Wharton Sch, Dept Stat & Data Sci, 265 South 37th St, Philadelphia, PA 19104 USA
来源:
基金:
美国国家卫生研究院;
关键词:
Causal inference;
Semiparametric theory;
Unmeasured confounding;
ROBUST ESTIMATION;
D O I:
10.1093/biomet/asae064
中图分类号:
Q [生物科学];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Many proposals for the identification of causal effects require an instrumental variable that satisfies strong, untestable unconfoundedness and exclusion restriction assumptions. In this paper, we show how one can potentially identify causal effects under violations of these assumptions by harnessing a negative control population or outcome. This strategy allows one to leverage subpopulations for whom the exposure is degenerate, and requires that the instrument-outcome association satisfies a certain parallel trend condition. We develop semiparametric efficiency theory for a general instrumental variable model, and obtain a multiply robust, locally efficient estimator of the average treatment effect in the treated. The utility of the estimators is demonstrated in simulation studies and an analysis of the Life Span Study.
引用
收藏
页数:15
相关论文