Using negative controls to identify causal effects with invalid instrumental variables

被引:0
|
作者
Dukes, O. [1 ]
Richardson, D. B. [2 ]
Shahn, Z. [3 ]
Robins, J. M. [4 ]
Tchetgen, E. J. Tchetgen [5 ]
机构
[1] Univ Ghent, Dept Appl Math Stat & Comp Sci, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Univ Calif Irvine, Dept Environm & Occupat Hlth, 653 E Peltason Dr, Irvine, CA 92697 USA
[3] CUNY, Dept Epidemiol & Biostat, 55 W 125th St, New York, NY 10027 USA
[4] Harvard T H Chan Sch Publ Hlth, Dept Epidemiol, 677 Huntington Ave, Boston, MA 02115 USA
[5] Univ Penn, Wharton Sch, Dept Stat & Data Sci, 265 South 37th St, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Causal inference; Semiparametric theory; Unmeasured confounding; ROBUST ESTIMATION;
D O I
10.1093/biomet/asae064
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many proposals for the identification of causal effects require an instrumental variable that satisfies strong, untestable unconfoundedness and exclusion restriction assumptions. In this paper, we show how one can potentially identify causal effects under violations of these assumptions by harnessing a negative control population or outcome. This strategy allows one to leverage subpopulations for whom the exposure is degenerate, and requires that the instrument-outcome association satisfies a certain parallel trend condition. We develop semiparametric efficiency theory for a general instrumental variable model, and obtain a multiply robust, locally efficient estimator of the average treatment effect in the treated. The utility of the estimators is demonstrated in simulation studies and an analysis of the Life Span Study.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Opportunities and Challenges in Using Instrumental Variables to Study Causal Effects in Nonrandomized Stress and Trauma Research
    Matthay, Ellicott C.
    Smith, Meghan L.
    Glymour, M. Maria
    White, Justin S.
    Gradus, Jaimie L.
    PSYCHOLOGICAL TRAUMA-THEORY RESEARCH PRACTICE AND POLICY, 2023, 15 (06) : 917 - 929
  • [22] Sensitivity analysis of G-estimators to invalid instrumental variables
    Vancak, Valentin
    Sjoelander, Arvid
    STATISTICS IN MEDICINE, 2023, 42 (23) : 4257 - 4281
  • [23] On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments
    Windmeijer, Frank
    Farbmacher, Helmut
    Davies, Neil
    Smith, George Davey
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) : 1339 - 1350
  • [24] Semiparametric efficient G-estimation with invalid instrumental variables
    Sun, B.
    Liu, Z.
    Tchetgen, E. J. Tchetgen
    BIOMETRIKA, 2023, 110 (04) : 953 - 971
  • [25] Peer effects in consumption in India: An instrumental variables approach using negative idiosyncratic shocks
    Roychowdhury, Punarjit
    WORLD DEVELOPMENT, 2019, 114 : 122 - 137
  • [26] Using instrumental variables to address unmeasured confounding in causal mediation analysis
    Rudolph, Kara E.
    Williams, Nicholas
    Diaz, Ivan
    BIOMETRICS, 2024, 80 (01)
  • [27] Examining the causal effects of air pollution on dockless bike-sharing usage using instrumental variables
    Liang, Yuan
    Wang, Donggen
    Yang, Hongtai
    Yuan, Quan
    Yang, Linchuan
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2023, 121
  • [28] Bias and mean squared error in Mendelian randomization with invalid instrumental variables
    Deng, Lu
    Fu, Sheng
    Yu, Kai
    GENETIC EPIDEMIOLOGY, 2024, 48 (01) : 27 - 41
  • [29] Mendelian randomisation and instrumental variables for causal inference
    Sheehan, NA
    Didelez, V
    GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 277 - 277
  • [30] On Instrumental Variables Estimation of Causal Odds Ratios
    Vansteelandt, Stijn
    Bowden, Jack
    Babanezhad, Manoochehr
    Goetghebeur, Els
    STATISTICAL SCIENCE, 2011, 26 (03) : 403 - 422