Capacitary inradius and Poincaré-Sobolev inequalities

被引:0
|
作者
Bozzola, Francesco [1 ]
Brasco, Lorenzo [2 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parco Area Sci 53-A Campus, I-43124 Parma, Italy
[2] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, I-44121 Ferrara, Italy
关键词
Poincar & eacute; inequality; inradius; capacity; Cheeger's constant; FUNDAMENTAL-FREQUENCY;
D O I
10.1051/cocv/2025016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a two-sided estimate on the sharp Lp Poincar & eacute; constant of a general open set, in terms of a capacitary variant of its inradius. This extends a result by Maz'ya and Shubin, originally devised for the case p = 2, in the subconformal regime. We cover the whole range of p, by allowing in particular the extremal cases p = 1 (Cheeger's constant) and p = N (conformal case), as well. We also discuss the more general case of the sharp Poincar & eacute;-Sobolev embedding constants and get an analogous result. Finally, we present a brief discussion on the superconformal case, as well as some examples and counter-examples.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] The sharp higher-order Lorentz–Poincaré and Lorentz–Sobolev inequalities in the hyperbolic spaces
    Van Hoang Nguyen
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 2133 - 2153
  • [42] Hardy-Poincar?-Sobolev type inequalities on hyperbolic spaces and related Riemannian manifolds
    Flynn, Joshua
    Lam, Nguyen
    Lu, Guozhen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (12)
  • [43] Sharp Poincaré and log-Sobolev inequalities for the switch chain on regular bipartite graphs
    Konstantin Tikhomirov
    Pierre Youssef
    Probability Theory and Related Fields, 2023, 185 : 89 - 184
  • [44] Weak log-Sobolev and Lp weak Poincaré inequalities for general symmetric forms
    Changsong Deng
    Yanhong Song
    Frontiers of Mathematics in China, 2012, 7 : 1059 - 1071
  • [45] Inequalities involving the inradius and altitudes of a triangle
    Nguyen Xuan Tho
    MATHEMATICAL GAZETTE, 2022, 106 (566): : 341 - 342
  • [46] CAPACITARY MAXIMAL INEQUALITIES AND AN ERGODIC THEOREM
    FUKUSHIMA, M
    LECTURE NOTES IN MATHEMATICS, 1983, 1021 : 130 - 136
  • [47] INDUCED DIRICHLET FORMS AND CAPACITARY INEQUALITIES
    ISCOE, I
    MCDONALD, D
    ANNALS OF PROBABILITY, 1990, 18 (03): : 1195 - 1221
  • [48] Poincaré inequalities on graphs
    M. Levi
    F. Santagati
    A. Tabacco
    M. Vallarino
    Analysis Mathematica, 2023, 49 (2) : 529 - 544
  • [49] On fractional Poincaré inequalities
    Ritva Hurri-Syrjänen
    Antti V. Vähäkangas
    Journal d'Analyse Mathématique, 2013, 120 : 85 - 104
  • [50] On fractional Poincar, inequalities
    Hurri-Syrjanen, Ritva
    Vahakangas, Antti V.
    JOURNAL D ANALYSE MATHEMATIQUE, 2013, 120 : 85 - 104