Modeling Cavitation in Converging-Diverging Nozzle Using Computational Fluid Dynamics and Machine Learning Model

被引:0
|
作者
Lu, You-Cheng [1 ]
Mohammadzaheri, Morteza [2 ]
Cheng, Way Lee [1 ]
机构
[1] Natl Sun Yat sen Univ, Dept Mech & Electromech Engn, 70 Lien hai Rd, Kaohsiung 804, Taiwan
[2] German Univ Technol Oman, Engn Dept, POB 1816, Athaibah 130, Sultanate Of Om, Oman
关键词
Cavitation; Computational fluid dynamic; Machine learning; Venturi tube; HYDRODYNAMIC CAVITATION; FLOWS; CFD;
D O I
10.1002/ceat.12011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cavitation occurs when the pressure drops below the saturation pressure. In this study, computational fluid dynamics (CFD) is used to model the cavitation behavior in the Venturi tube under high pressure and to investigate the impact of geometric parameters on steam generation. In recent years, there has been a shift toward exploring machine learning as an alternative to traditional CFD. This work aims to establish an artificial neural network (ANN) using numerical analysis results to predict flow characteristics for various geometrical shapes of nozzles. This including the prediction of pressure drop and steam generation. The final results demonstrate a high accuracy in prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Surrogate Modeling a Computational Fluid Dynamics-based Wind Turbine Wake Simulation using Machine Learning
    Wilson, Brett
    Wakes, Sarah
    Mayo, Michael
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [32] Machine learning-accelerated computational fluid dynamics
    Kochkov, Dmitrii
    Smith, Jamie A.
    Alieva, Ayya
    Wang, Qing
    Brenner, Michael P.
    Hoyer, Stephan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (21)
  • [33] Emerging Trends in Machine Learning for Computational Fluid Dynamics
    Vinuesa, Ricardo
    Brunton, Steven L. L.
    COMPUTING IN SCIENCE & ENGINEERING, 2022, 24 (05) : 33 - 41
  • [34] Rocket nozzle flow control using a reduced-order computational fluid dynamics model
    Lucia, DJ
    Pachter, M
    Beran, PS
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2002, 25 (03) : 449 - 454
  • [35] Modeling of solid-liquid flow inside conical diverging sections using computational fluid dynamics approach
    Singh, Harmanpreet
    Kumar, Satish
    Mohapatra, Saroj Kumar
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 186
  • [36] Design study of printer nozzle spray dryer by computational fluid dynamics modeling
    Jaskulski, Maciej
    Thi Thu Hang Tran
    Tsotsas, Evangelos
    DRYING TECHNOLOGY, 2020, 38 (1-2) : 211 - 223
  • [37] Computational Fluid Dynamics Modeling of Flashing Flow in Convergent-Divergent Nozzle
    Quang Dang Le
    Mereu, Riccardo
    Besagni, Giorgio
    Dossena, Vincenzo
    Inzoli, Fabio
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (10):
  • [38] Computational Fluid Dynamics Modeling of Heat Transfer and Condensation in a Modified Laval Nozzle
    Rezaei, Hooshyar
    Rahimi, Masoud
    Ovaysi, Saeed
    Alsairafi, Ammar Abdulaziz
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2022, 36 (03) : 667 - 675
  • [39] An Assessment of Computational Fluid Dynamics Cavitation Models Using Bubble Growth Theory and Bubble Transport Modeling
    Kinzel, Michael P.
    Lindau, Jules W.
    Kunz, Robert F.
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (04):
  • [40] Investigating the microlubrication flow inside the nozzle using computational fluid dynamics
    Bhise, Dipali K.
    Patil, Bhushan T.
    Shaikh, Vasim A.
    Deshmukh, Sujata P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 492 - 496