Modeling Cavitation in Converging-Diverging Nozzle Using Computational Fluid Dynamics and Machine Learning Model

被引:0
|
作者
Lu, You-Cheng [1 ]
Mohammadzaheri, Morteza [2 ]
Cheng, Way Lee [1 ]
机构
[1] Natl Sun Yat sen Univ, Dept Mech & Electromech Engn, 70 Lien hai Rd, Kaohsiung 804, Taiwan
[2] German Univ Technol Oman, Engn Dept, POB 1816, Athaibah 130, Sultanate Of Om, Oman
关键词
Cavitation; Computational fluid dynamic; Machine learning; Venturi tube; HYDRODYNAMIC CAVITATION; FLOWS; CFD;
D O I
10.1002/ceat.12011
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cavitation occurs when the pressure drops below the saturation pressure. In this study, computational fluid dynamics (CFD) is used to model the cavitation behavior in the Venturi tube under high pressure and to investigate the impact of geometric parameters on steam generation. In recent years, there has been a shift toward exploring machine learning as an alternative to traditional CFD. This work aims to establish an artificial neural network (ANN) using numerical analysis results to predict flow characteristics for various geometrical shapes of nozzles. This including the prediction of pressure drop and steam generation. The final results demonstrate a high accuracy in prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Helical drilling of three-dimensional conical converging-diverging nozzle in steel using ultrashort laser pulses
    He, Chao
    Buehring, Jannik
    Gillner, Arnold
    10TH CIRP CONFERENCE ON PHOTONIC TECHNOLOGIES [LANE 2018], 2018, 74 : 305 - 309
  • [22] Machine Learning Computational Fluid Dynamics
    Usman, Ali
    Rafiq, Muhammad
    Saeed, Muhammad
    Nauman, Ali
    Almqvist, Andreas
    Liwicki, Marcus
    33RD WORKSHOP OF THE SWEDISH ARTIFICIAL INTELLIGENCE SOCIETY (SAIS 2021), 2021, : 46 - 49
  • [23] Transition Modeling for Low Pressure Turbines Using Computational Fluid Dynamics Driven Machine Learning
    Akolekar, Harshal D.
    Waschkowski, Fabian
    Zhao, Yaomin
    Pacciani, Roberto
    Sandberg, Richard D.
    ENERGIES, 2021, 14 (15)
  • [24] Heat transfer and rheological analysis of a converging-diverging artery using the Prandtl viscoelastic model with chemical reactions
    Chebaane, Saleh
    Fatunmbi, E. O.
    Obalalu, A. M.
    Bouzidi, Mohamed
    Alkathiri, Turki
    Saidani, Taoufik
    Abbas, Amir
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2025, 60
  • [25] Enhancing computational fluid dynamics with machine learning
    Ricardo Vinuesa
    Steven L. Brunton
    Nature Computational Science, 2022, 2 : 358 - 366
  • [26] Enhancing computational fluid dynamics with machine learning
    Vinuesa, Ricardo
    Brunton, Steven L.
    NATURE COMPUTATIONAL SCIENCE, 2022, 2 (06): : 358 - 366
  • [27] Converging on a Computational Model of Object Recognition: Psychophysics and Machine Learning
    Pelli, Denis
    PERCEPTION, 2016, 45 (06) : 688 - 688
  • [28] Combining machine learning with computational fluid dynamics using OpenFOAM and SmartSim
    Maric, Tomislav
    Fadeli, Mohammed Elwardi
    Rigazzi, Alessandro
    Shao, Andrew
    Weiner, Andre
    MECCANICA, 2024,
  • [29] Optimization of Pin Fins Using Computational Fluid Dynamics and Machine Learning
    Sarosi, Robert
    Montomoli, Francesco
    Li, Zhihui
    Agarwal, Ramesh K.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2025, 39 (01) : 172 - 184
  • [30] Modeling and assessment of accidental subsea gas leakage using a coupled computational fluid dynamics and machine learning approaches
    Ellethy, Ahmed M.
    Shehata, Ahmed S.
    Shehata, Ali, I
    Mehanna, Ahmed
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2023, 237 (03) : 764 - 787