Secure IoT sensor networks through advanced anomaly detection with Kolmogorov-Arnold Networks (KANs)

被引:0
|
作者
Mishra, Shreshtha [1 ]
Jain, Usha [1 ]
机构
[1] Manipal Univ Jaipur, Dept Comp Sci & Engn, Jaipur, Rajasthan, India
关键词
D O I
10.1007/s00542-025-05848-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the field of the Internet of Things (IoT), the security and reliability of sensor networks is rather lacking, open to Denial of Service (DOS), scanning, malicious control, malicious operation, spying, and data probing. This paper explores the use of Kolmogorov-Arnold Networks (KANs) for advanced anomaly and attack detection in IoT sensor networks. For real-time application, the implementation makes use of Gaussian Radial Basis Function (RBF) along side with Reflectional Switch Activation Function (RSWAF). The RBFs allows the network to capture local non-linear relationships, improving the performance of model, both in terms of accuracy and computational efficiency. The RSWAF provides a computationally efficient activation mechanism that facilitates faster learning and inference. Our experiments demonstrate that the faster-KAN implementation significantly reduces training and inference times while maintaining high accuracy and robustness in detecting anomalies and attacks, achieving an accuracy of 99.38% for test dataset. Other metrics, such as F1-score, precision, recall, and confusion matrix are used to estimate the effectiveness of the model and compare with other models.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The Application of the Novel Kolmogorov-Arnold Networks for Predicting the Fundamental Period of RC Infilled Frame Structures
    Lin, Shan
    Zhao, Kaiyang
    Guo, Hongwei
    Hu, Quanke
    Cao, Xitailang
    Zheng, Hong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2025,
  • [42] Predicting Chlorophyll-a Concentrations in the World's Largest Lakes Using Kolmogorov-Arnold Networks
    Saravani, Mohammad Javad
    Noori, Roohollah
    Jun, Changhyun
    Kim, Dongkyun
    Bateni, Sayed M.
    Kianmehr, Peiman
    Woolway, Richard Iestyn
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2025, 59 (03) : 1801 - 1810
  • [43] MOF-KAN: Kolmogorov-Arnold Networks for Digital Discovery of Metal-Organic Frameworks
    Wu, Xiaoyu
    Song, Xianyu
    Yue, Yifei
    Zheng, Rui
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (10): : 2452 - 2459
  • [44] KOLMOGOROV-ARNOLD NEURAL NETWORKS TECHNIQUE FOR THE STATE OF CHARGE ESTIMATION FOR LI-ION BATTERIES
    Dao, M. H.
    Liu, F.
    Sidorov, D. N.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2024, 17 (04): : 22 - 31
  • [45] Co-design for Kolmogorov-Arnold networks to unlock the full potential of optical intelligent accelerators
    Du, Shiyin
    Hao, Ouyang
    Tao, Zilong
    Yan, Qiuquan
    Hao, Hao
    Zhang, Jun
    Tang, Yuhua
    Jiang, Tian
    OPTICS LETTERS, 2025, 50 (05) : 1695 - 1698
  • [46] A Survey of AI-Based Anomaly Detection in IoT and Sensor Networks
    DeMedeiros, Kyle
    Hendawi, Abdeltawab
    Alvarez, Marco
    SENSORS, 2023, 23 (03)
  • [47] An Anomaly Detecting Blockchain Strategy for Secure IoT Networks
    Alsadi, Naseem
    Hilal, Waleed
    Surucu, Onur
    Giuliani, Alessandro
    Gadsden, Stephen A.
    Yawney, John
    Iskander, Stephan
    DISRUPTIVE TECHNOLOGIES IN INFORMATION SCIENCES VI, 2022, 12117
  • [48] KansNet: Kolmogorov-Arnold Networks and multi slice partition channel priority attention in convolutional neural network for lung nodule detection
    Jiang, Chaoxi
    Li, Yueyang
    Luo, Haichi
    Zhang, Caidi
    Du, Hongqun
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 103
  • [49] Detecting Anomaly Data for IoT Sensor Networks
    Wei, Zhe
    Wang, Fang
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [50] Comparison of Kolmogorov-Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems
    Ansar, Talha
    Ashraf, Waqar Muhammad
    ENERGY AND AI, 2025, 20