Dynamic model-driven dictionary learning-inspired domain adaptation strategy for cross-domain bearing fault diagnosis

被引:0
|
作者
Du, Zhengyu [1 ]
Liu, Dongdong [2 ]
Cui, Lingli [1 ]
机构
[1] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep discriminative transfer dictionary neural; network; Sparse representation space; Adaptive bandwidth maximum mean; discrepancy; Median heuristic; NETWORK;
D O I
10.1016/j.ress.2025.110905
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cross-domain fault diagnosis methods have been extensively investigated to improve practical engineering implications for data-driven models. However, the annotated data in practical applications is often insufficient, which makes it difficult to train the model effectively. Additionally, existing methods typically transfer knowledge learned from one device to another, where collected data from different devices exhibit different distribution representations. To address the above issues, a dynamic model-driven dictionary learning-inspired domain adaptation strategy is proposed. First, a novel dynamic model that quantitatively considers the effects of slip and lubrication is established to generate a mass of labeled data. Second, a novel deep discriminative transfer dictionary neural network (DDTDNN) is developed, in which a new multi-layer deep dictionary learning module (MDDL) and an adaptive bandwidth maximum mean discrepancy (ABMMD) metric are designed. MDDL leverages iterative soft thresholding and gradient descent processes to extract domain invariant representation within sparse representation space, while ABMMD is incorporated into the loss function and works alongside the classification loss to jointly influence the model. This new metric can dynamically set kernel widths by a median heuristic method, which helps the model to adapt the scale of the data and align feature distributions more effectively. The effectiveness of DDTDNN is validated on two cross-domain datasets. Experiment results show that DDTDNN achieves classification accuracies of 99.1 %, and 98.5 %, respectively, which outperforms several state-of-the-art methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Cross-domain intelligent fault diagnosis of rolling bearing based on distance metric transfer learning
    Zhou, Hongdi
    Huang, Tao
    Li, Xixing
    Zhong, Fei
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (11)
  • [42] Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers
    Wang, Huaqing
    Xu, Zhitao
    Tong, Xingwei
    Song, Liuyang
    SENSORS, 2023, 23 (04)
  • [43] Open-set federated adversarial domain adaptation based cross-domain fault diagnosis
    Xu, Shu
    Ma, Jian
    Song, Dengwei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [44] Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
    Zhang, Yongchao
    Ren, Zhaohui
    Feng, Ke
    Yu, Kun
    Beer, Michael
    Liu, Zheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [45] Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization
    Yue, Fengyu
    Wang, Yong
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1826 - 1832
  • [46] FCDG: A Central Dogma-Inspired Approach for Cross-Domain Fault Diagnosis
    Fang, Hairui
    Xiang, Jiawei
    An, Jialin
    Liu, Han
    Li, Haoze
    Cui, Yiwen
    Dunkin, Fir
    IEEE SENSORS JOURNAL, 2025, 25 (03) : 5192 - 5199
  • [47] Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review
    Zheng, Huailiang
    Wang, Rixin
    Yang, Yuantao
    Yin, Jiancheng
    Li, Yongbo
    Li, Yuqing
    Xu, Minqiang
    IEEE ACCESS, 2019, 7 : 129260 - 129290
  • [48] Few-Shot Cross-Domain Fault Diagnosis of Bearing Driven by Task-Supervised ANIL
    Shao, Haidong
    Zhou, Xiangdong
    Lin, Jian
    Liu, Bin
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22892 - 22902
  • [49] Generalized MAML for few-shot cross-domain fault diagnosis of bearing driven by heterogeneous signals
    Lin, Jian
    Shao, Haidong
    Zhou, Xiangdong
    Cai, Baoping
    Liu, Bin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 230
  • [50] Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
    Liu, Zhao-Hua
    Lu, Bi-Liang
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    Raetsch, Matthias
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4217 - 4226