Dynamic model-driven dictionary learning-inspired domain adaptation strategy for cross-domain bearing fault diagnosis

被引:0
|
作者
Du, Zhengyu [1 ]
Liu, Dongdong [2 ]
Cui, Lingli [1 ]
机构
[1] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep discriminative transfer dictionary neural; network; Sparse representation space; Adaptive bandwidth maximum mean; discrepancy; Median heuristic; NETWORK;
D O I
10.1016/j.ress.2025.110905
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cross-domain fault diagnosis methods have been extensively investigated to improve practical engineering implications for data-driven models. However, the annotated data in practical applications is often insufficient, which makes it difficult to train the model effectively. Additionally, existing methods typically transfer knowledge learned from one device to another, where collected data from different devices exhibit different distribution representations. To address the above issues, a dynamic model-driven dictionary learning-inspired domain adaptation strategy is proposed. First, a novel dynamic model that quantitatively considers the effects of slip and lubrication is established to generate a mass of labeled data. Second, a novel deep discriminative transfer dictionary neural network (DDTDNN) is developed, in which a new multi-layer deep dictionary learning module (MDDL) and an adaptive bandwidth maximum mean discrepancy (ABMMD) metric are designed. MDDL leverages iterative soft thresholding and gradient descent processes to extract domain invariant representation within sparse representation space, while ABMMD is incorporated into the loss function and works alongside the classification loss to jointly influence the model. This new metric can dynamically set kernel widths by a median heuristic method, which helps the model to adapt the scale of the data and align feature distributions more effectively. The effectiveness of DDTDNN is validated on two cross-domain datasets. Experiment results show that DDTDNN achieves classification accuracies of 99.1 %, and 98.5 %, respectively, which outperforms several state-of-the-art methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Remaining useful life prediction model of cross-domain rolling bearing via dynamic hybrid domain adaptation and attention contrastive learning
    Lu, Xingchi
    Yao, Xuejian
    Jiang, Quansheng
    Shen, Yehu
    Xu, Fengyu
    Zhu, Qixin
    COMPUTERS IN INDUSTRY, 2025, 164
  • [32] KMDSAN: A novel method for cross-domain and unsupervised bearing fault diagnosis
    Wu, Shuping
    Shi, Peiming
    Xu, Xuefang
    Yang, Xu
    Li, Ruixiong
    Qiao, Zijian
    KNOWLEDGE-BASED SYSTEMS, 2025, 312
  • [33] A new multi-layer adaptation cross-domain model for bearing fault diagnosis under different operating conditions
    Bao, Huaiqian
    Kong, Lingtan
    Lu, Limei
    Wang, Jinrui
    Zhang, Zongzhen
    Han, Baokun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [34] Multirepresentation Dynamic Adaptive Network for Cross-Domain Rolling Bearing Fault Diagnosis in Complex Scenarios
    Zeng, Yi
    Sun, Bowen
    Xu, Renyi
    Qi, Guopeng
    Wang, Feiyang
    Zhang, Zhengzhuang
    Wu, Kelin
    Wu, Dazhuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [35] Automated broad transfer learning for cross-domain fault diagnosis
    Liu, Guokai
    Shen, Weiming
    Gao, Liang
    Kusiak, Andrew
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 66 : 27 - 41
  • [36] A Novel Lightweight Unsupervised Multi-branch Domain Adaptation Network for Bearing Fault Diagnosis Under Cross-Domain Conditions
    Wang, Gongxian
    Zhang, Teng
    Hu, Zhihui
    Zhang, Miao
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2023, 23 (04) : 1645 - 1662
  • [37] A Novel Lightweight Unsupervised Multi-branch Domain Adaptation Network for Bearing Fault Diagnosis Under Cross-Domain Conditions
    Gongxian Wang
    Teng Zhang
    Zhihui Hu
    Miao Zhang
    Journal of Failure Analysis and Prevention, 2023, 23 : 1645 - 1662
  • [38] A MODEL-DRIVEN APPROACH TO THE INTEGRATION OF PRODUCT MODELS INTO CROSS-DOMAIN ANALYSES
    Hartmann, Ulrich
    von Both, Petra
    JOURNAL OF INFORMATION TECHNOLOGY IN CONSTRUCTION, 2015, 20 : 253 - 274
  • [39] A model-driven approach to the integration of product models into cross-domain analyses
    Hartmann, Ulrich
    Von Both, Petra
    Journal of Information Technology in Construction, 2015, 20 : 253 - 274
  • [40] Cross-domain fault diagnosis method for rolling bearings based on contrastive universal domain adaptation
    Kang, Shouqiang
    Tang, Xi
    Wang, Yujing
    Wang, Qingyan
    Xie, Jinbao
    ISA TRANSACTIONS, 2024, 146 : 195 - 207