Dynamic model-driven dictionary learning-inspired domain adaptation strategy for cross-domain bearing fault diagnosis

被引:0
|
作者
Du, Zhengyu [1 ]
Liu, Dongdong [2 ]
Cui, Lingli [1 ]
机构
[1] Beijing Univ Technol, Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Beijing Engn Res Ctr Precis Measurement Technol &, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep discriminative transfer dictionary neural; network; Sparse representation space; Adaptive bandwidth maximum mean; discrepancy; Median heuristic; NETWORK;
D O I
10.1016/j.ress.2025.110905
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cross-domain fault diagnosis methods have been extensively investigated to improve practical engineering implications for data-driven models. However, the annotated data in practical applications is often insufficient, which makes it difficult to train the model effectively. Additionally, existing methods typically transfer knowledge learned from one device to another, where collected data from different devices exhibit different distribution representations. To address the above issues, a dynamic model-driven dictionary learning-inspired domain adaptation strategy is proposed. First, a novel dynamic model that quantitatively considers the effects of slip and lubrication is established to generate a mass of labeled data. Second, a novel deep discriminative transfer dictionary neural network (DDTDNN) is developed, in which a new multi-layer deep dictionary learning module (MDDL) and an adaptive bandwidth maximum mean discrepancy (ABMMD) metric are designed. MDDL leverages iterative soft thresholding and gradient descent processes to extract domain invariant representation within sparse representation space, while ABMMD is incorporated into the loss function and works alongside the classification loss to jointly influence the model. This new metric can dynamically set kernel widths by a median heuristic method, which helps the model to adapt the scale of the data and align feature distributions more effectively. The effectiveness of DDTDNN is validated on two cross-domain datasets. Experiment results show that DDTDNN achieves classification accuracies of 99.1 %, and 98.5 %, respectively, which outperforms several state-of-the-art methods.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Dynamic Model-Assisted Transfer-Coupled Dictionary Learning Strategy for Bearing Cross-Domain Fault Diagnosis
    Du, Zhengyu
    Liu, Dongdong
    Cui, Lingli
    IEEE SENSORS JOURNAL, 2025, 25 (03) : 5152 - 5161
  • [2] Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis
    Meng, Yu
    Xuan, Jianping
    Xu, Long
    Liu, Jie
    MACHINES, 2022, 10 (04)
  • [3] A domain adaptation model based on multiscale residual networks for aeroengine bearing cross-domain fault diagnosis
    Yang, Pu
    Geng, Huilin
    Liu, Peng
    Wen, ChenWan
    Shen, Ziwei
    MEASUREMENT & CONTROL, 2023, 56 (5-6): : 975 - 988
  • [4] A New Universal Cross-Domain Bearing Fault Diagnosis Framework With Dynamic Distribution Adaptation Guided by Metric Learning
    Cao, Ximing
    Yang, Ruifeng
    Guo, Chenxia
    Wang, Shichao
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 40038 - 40048
  • [5] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Domain Adaptation With Multi-Adversarial Learning for Open-Set Cross-Domain Intelligent Bearing Fault Diagnosis
    Zhu, Zhixiao
    Chen, Guangyi
    Tang, Gang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
    Xu, Gaowei
    Huang, Chenxi
    Silva, Daniel Santos da
    Albuquerque, Victor Hugo C. de
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6741 - 6749
  • [8] Self-supervised domain adaptation for cross-domain fault diagnosis
    Lu, Weikai
    Fan, Haoyi
    Zeng, Kun
    Li, Zuoyong
    Chen, Jian
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (12) : 10903 - 10923
  • [9] Joint Discriminative Adversarial Domain Adaptation for Cross-Domain Fault Diagnosis
    Sun, Kai
    Xu, Xinghan
    Lu, Nannan
    Xia, Huijuan
    Han, Min
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [10] AFARN: Domain Adaptation for Intelligent Cross-Domain Bearing Fault Diagnosis in Nuclear Circulating Water Pump
    Cheng, Wei
    Liu, Xue
    Xing, Ji
    Chen, Xuefeng
    Ding, Baoqing
    Zhang, Rongyong
    Zhou, Kangning
    Huang, Qian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (03) : 3229 - 3239