Enhancing the heart failure survival prediction by using artificial intelligence

被引:0
|
作者
Ayesha [1 ]
Farooq, Muhammad [2 ]
机构
[1] Univ Lahore, Lahore Business Sch, Lahore, Pakistan
[2] COMSATS Univ, Dept Stat, Islamabad, Pakistan
关键词
Deep learning models; Heart failure; Heart patients; Survival analysis; MACHINE;
D O I
10.1080/03610918.2025.2459295
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Heart failure is a widespread cardiovascular ailment posing a significant threat to global health with an estimated 17.9 million annual fatalities. This study focuses on 299 patients with advanced heart failure (classified as III/IV) and left ventricular systolic dysfunction. Our examination involves assessing the concordance index for model evaluation. To augment our predictive capacities, we proposed a DS-NN. This model was compared against the random survival forest, gradient boosting, gradient boosting least square and the Cox proportional hazard model. Notably, DS-NN showcased superior prowess compared to the other five models with concordance index values of 0.73 and 0.72 for the training and testing sets, respectively. This implies that incorporating deep learning into survival prediction holds promise for more accuracy and offering clinicians' valuable insights for treatment decisions. This ultimately leads to improved survival outcomes and the avoidance of unnecessary interventions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Multiomics, virtual reality and artificial intelligence in heart failure
    Gladding, Patrick A.
    Loader, Suzanne
    Smith, Kevin
    Zarate, Erica
    Green, Saras
    Villas-Boas, Silas
    Shepherd, Phillip
    Kakadiya, Purvi
    Hewitt, Will
    Thorstensen, Eric
    Keven, Christine
    Coe, Margaret
    Nakisa, Bahareh
    Tan Vuong
    Rastgoo, Mohammad Naim
    Jullig, Mia
    Starc, Vito
    Schlegel, Todd T.
    FUTURE CARDIOLOGY, 2021, 17 (08) : 1335 - 1347
  • [42] Artificial intelligence in heart failure improving the efficiency or dependency on it? Letter regarding the article Artificial intelligence and heart failure: A state-of-the-art review'
    Sandeep, Bhushan
    Huang, Xin
    Xiao, Zongwei
    EUROPEAN JOURNAL OF HEART FAILURE, 2024, 26 (03) : 705 - 705
  • [43] The Heart of Artificial Intelligence: A Review of Machine Learning for Heart Disease Prediction
    Neciosup-Bolanos, Brayan R.
    Cieza-Mostacero, Segundo E.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (12) : 80 - 85
  • [44] Heart failure survival prediction using machine learning algorithm: am I safe from heart failure?
    Mamun, Muntasir
    Farjana, Afia
    Al Mamun, Miraz
    Ahammed, Md Salim
    Rahman, Md Minhazur
    2022 IEEE WORLD AI IOT CONGRESS (AIIOT), 2022, : 194 - 200
  • [45] Using Artificial Intelligence in an Intelligent Way to Improve Efficiency of a Heart Failure Care Team
    Weber, Griffin M.
    JOURNAL OF CARDIAC FAILURE, 2018, 24 (06) : 363 - 364
  • [46] The Risk Model for Prediction of Survival in Heart Failure
    Yang, Dong Heon
    KOREAN CIRCULATION JOURNAL, 2012, 42 (10) : 657 - 658
  • [47] Artificial Intelligence Algorithm for Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography
    Cho, Jinwoo
    Lee, ByeongTak
    Kwon, Joon-Myoung
    Lee, Yeha
    Park, Hyunho
    Oh, Byung-Hee
    Jeon, Ki-Hyun
    Park, Jinsik
    Kim, Kyung-Hee
    ASAIO JOURNAL, 2021, 67 (03) : 314 - 321
  • [48] Heart disease prediction (HDP) using Artificial Intelligence and IoMT for intelligent healthcare models
    Hussainy, F. Syed Anwar
    Thillaigovindan, Senthil Kumar
    Sabhanayagam, T.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 8171 - 8180
  • [49] Heart disease prediction using distinct artificial intelligence techniques: performance analysis and comparison
    Md. Imam Hossain
    Mehadi Hasan Maruf
    Md. Ashikur Rahman Khan
    Farida Siddiqi Prity
    Sharmin Fatema
    Md. Sabbir Ejaz
    Md. Ahnaf Sad Khan
    Iran Journal of Computer Science, 2023, 6 (4) : 397 - 417
  • [50] Clinical application of artificial intelligence algorithm for prediction of one-year mortality in heart failure patients
    Hiroyuki Takahama
    Kunihiro Nishimura
    Budrul Ahsan
    Yasuhiro Hamatani
    Yuichi Makino
    Shoko Nakagawa
    Yuki Irie
    Kenji Moriuchi
    Masashi Amano
    Atsushi Okada
    Takeshi Kitai
    Makoto Amaki
    Hideaki Kanzaki
    Teruo Noguchi
    Kengo Kusano
    Masaharu Akao
    Satoshi Yasuda
    Chisato Izumi
    Heart and Vessels, 2023, 38 : 785 - 792