The Heart of Artificial Intelligence: A Review of Machine Learning for Heart Disease Prediction

被引:0
|
作者
Neciosup-Bolaños, Brayan R. [1 ]
Cieza-Mostacero, Segundo E. [1 ]
机构
[1] Research Group Trend and Innovation in Systems Engineering -Trujillo, Cesar Vallejo University, Peru
关键词
Adversarial machine learning;
D O I
10.14569/IJACSA.2024.0151208
中图分类号
学科分类号
摘要
Heart disease is one of the main heart diseases that cause the death of people worldwide, affecting the engine of the human body: the heart. It has a greater incidence in underdeveloped countries such as Angola, Bangladesh, Ethiopia and Haiti, for this reason, obtaining accurate results based on risk factors manually is a complex task. Therefore, this systematic review allowed us to analyze and study 32 articles applying the PRISMA methodology, which allowed us to evaluate the suitability of the methods and, consequently, their reliability in the results. The results of the study showed that the algorithm with the greatest accuracy in predicting these heart diseases is Random Forest. The most commonly used metrics to evaluate machine learning algorithms are sensitivity, F1 score, precision, and accuracy, with sensitivity highlighted as the primary metric. The most predominant independent aspects for predicting heart disease in machine learning models are age, sex, cholesterol, diabetes, and chest pain. Finally, the most used data distribution is 70% for training and 30% for testing, which achieves great accuracy in the algorithm prediction process. This study offers a promising path for the prevention and timely treatment of this disease through the use of machine learning algorithms. In the future, these advances could be applied in a system accessible to all people, thus improving access to healthcare and saving lives. © (2024), (Science and Information Organization). All Rights Reserved.
引用
收藏
页码:80 / 85
相关论文
共 50 条
  • [1] Applications of artificial intelligence and machine learning in heart failure
    Averbuch, Tauben
    Sullivan, Kristen
    Sauer, Andrew
    Mamas, Mamas A.
    Voors, Adriaan A.
    Gale, Chris P.
    Metra, Marco
    Ravindra, Neal
    Van Spall, Harriette G. C.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (02): : 311 - 322
  • [2] A systematic review of Machine learning techniques for Heart disease prediction
    Udhan, Shivganga
    Patil, Bankat
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (02): : 229 - 239
  • [3] Prediction of Heart Disease Using Machine Learning
    Begum, M. Asma
    Abirami, S.
    Anandhi, R.
    Dhivyadharshini, K.
    Devi, R. Ganga
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (04): : 39 - 42
  • [4] Heart Failure Diagnosis, Readmission, and Mortality Prediction Using Machine Learning and Artificial Intelligence Models
    Guo, Aixia
    Pasque, Michael
    Loh, Francis
    Mann, Douglas L.
    Payne, Philip R. O.
    CURRENT EPIDEMIOLOGY REPORTS, 2020, 7 (04) : 212 - 219
  • [5] Heart Failure Diagnosis, Readmission, and Mortality Prediction Using Machine Learning and Artificial Intelligence Models
    Aixia Guo
    Michael Pasque
    Francis Loh
    Douglas L. Mann
    Philip R. O. Payne
    Current Epidemiology Reports, 2020, 7 : 212 - 219
  • [6] An Extensive Review of Machine Learning and Deep Learning Techniques on Heart Disease Classification and Prediction
    Rani, Pooja
    Kumar, Rajneesh
    Jain, Anurag
    Lamba, Rohit
    Sachdeva, Ravi Kumar
    Kumar, Karan
    Kumar, Manoj
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (6) : 3331 - 3349
  • [7] Machine-learning Algorithms for Ischemic Heart Disease Prediction: A Systematic Review
    Hani, Salam H. Bani
    Ahmad, Muayyad M.
    CURRENT CARDIOLOGY REVIEWS, 2023, 19 (01) : 87 - 99
  • [8] Prediction of Heart Disease Using Machine Learning Algorithms
    Krishnan, Santhana J.
    Geetha, S.
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [9] Heart Disease Prediction using Machine Learning Techniques
    Shah D.
    Patel S.
    Bharti S.K.
    SN Computer Science, 2020, 1 (6)
  • [10] Prediction of Heart Disease using Machine Learning Algorithm
    Varale, Viraj S.
    Thakre, Kalpana S.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (14): : 287 - 290