Accurate and Efficient Algorithm for Detection of Alzheimer Disability Based on Deep Learning

被引:0
|
作者
Alfayez, Fayez [1 ]
Rozov, Sergey [2 ]
El Tokhy, Mohamed S. [2 ,3 ,4 ]
机构
[1] Majmaah Univ, Coll Sci, Dept Comp Sci & Informat, Al Majmaah 11952, Saudi Arabia
[2] Joint Inst Nucl Res, Dubna 141980, Russia
[3] Acad Sci Res & Technol ASRT, Cairo, Egypt
[4] Egyptian Atom Energy Author, Engn Dept, NRC, Cairo, Egypt
关键词
Algorithms; Alzheimer's Disease; Disability; Deep Learning; Alzheimer Disability; SUPPORT VECTOR MACHINE; BREAST-CANCER; DIAGNOSIS; DISEASE; CLASSIFICATION; MRI;
D O I
10.33594/000000746
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background/Aims: Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that severely affects cognitive functions and memory. Early detection is crucial for timely intervention and improved patient outcomes. However, traditional diagnostic tools, such as MRI and PET scans, are costly and less accessible. This study aims to develop an automated, cost-effective digital diagnostic approach using deep learning (DL) and computer-aided detection (CAD) methods for early AD identification and classification. Methods: The proposed framework utilizes pretrained convolutional neural networks (CNNs) for feature extraction, integrated with two classifiers: multi-class support vector machine (MSVM) and artificial neural network (ANN). A dataset categorized into four groups-non-demented, very mild demented, mild demented, and moderate demented-was employed for evaluation. To optimize the classification process, a texture-based algorithm was applied for feature reduction, enhancing computational efficiency and reducing processing time. Results: The system demonstrated high statistical performance, achieving an accuracy of 91%, precision of 95%, and recall of 90%. Among the initial set of twenty-two texture features, seven were identified as particularly effective in differentiating normal cases from mild AD stages, significantly streamlining the classification process. These results validate the robustness and efficacy of the proposed DL- based CAD system. Conclusions: This study presents a reliable and affordable solution for early AD detection and diagnosis. The proposed system outperforms existing state-of-theart models and offers a valuable tool for timely treatment planning. Future research should explore its application to larger, more diverse datasets and investigate integration with other imaging modalities, such as MRI, to further enhance diagnostic precision. (c) 2024 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG
引用
收藏
页码:739 / 755
页数:17
相关论文
共 50 条
  • [21] Detection algorithm of pulmonary nodules based on deep learning
    Zhang, Weiguo
    Cui, Linfang
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 185 - 188
  • [22] Hardware Trojan detection algorithm based on deep learning
    Liu Z.
    Zhang M.
    Chi Y.
    Li Y.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (06): : 37 - 45
  • [23] Deep learning based earthquake and vehicle detection algorithm
    Ertuncay, Deniz
    de Lorenzo, Andrea
    Costa, Giovanni
    JOURNAL OF SEISMOLOGY, 2024,
  • [24] Deep Learning Algorithm Based Breast Cancer Detection
    Malini, P.
    Anusuya, S.
    Vidya, A.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (02): : 43 - 48
  • [25] Research on Pedestrian Detection Algorithm Based on Deep Learning
    Wang, Ying
    Tian, Ying
    IAENG International Journal of Computer Science, 2023, 50 (04)
  • [26] Adaptive Pneumonia Detection Algorithm based on Deep Learning
    Wu, Yuxin
    Li, Qiang
    Wang, I-Chi
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2022, 66 (01)
  • [27] Sea Cucumber Detection Algorithm Based on Deep Learning
    Zhang, Lan
    Xing, Bowen
    Wang, Wugui
    Xu, Jingxiang
    SENSORS, 2022, 22 (15)
  • [28] Pedestrian Detection and Location Algorithm Based on Deep Learning
    Xie Chuang
    Li Pin
    Sun Yurong
    2019 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2019, : 582 - 585
  • [29] An Efficient Deep Learning Algorithm for Fire and Smoke Detection with Limited Data
    Namozov, Abdulaziz
    Cho, Young Im
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2018, 18 (04) : 121 - 128
  • [30] Using Pruning-Based YOLOv3 Deep Learning Algorithm for Accurate Detection of Sheep Face
    Song, Shuang
    Liu, Tonghai
    Wang, Hai
    Hasi, Bagen
    Yuan, Chuangchuang
    Gao, Fangyu
    Shi, Hongxiao
    ANIMALS, 2022, 12 (11):