Accurate and Efficient Algorithm for Detection of Alzheimer Disability Based on Deep Learning

被引:0
|
作者
Alfayez, Fayez [1 ]
Rozov, Sergey [2 ]
El Tokhy, Mohamed S. [2 ,3 ,4 ]
机构
[1] Majmaah Univ, Coll Sci, Dept Comp Sci & Informat, Al Majmaah 11952, Saudi Arabia
[2] Joint Inst Nucl Res, Dubna 141980, Russia
[3] Acad Sci Res & Technol ASRT, Cairo, Egypt
[4] Egyptian Atom Energy Author, Engn Dept, NRC, Cairo, Egypt
关键词
Algorithms; Alzheimer's Disease; Disability; Deep Learning; Alzheimer Disability; SUPPORT VECTOR MACHINE; BREAST-CANCER; DIAGNOSIS; DISEASE; CLASSIFICATION; MRI;
D O I
10.33594/000000746
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background/Aims: Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that severely affects cognitive functions and memory. Early detection is crucial for timely intervention and improved patient outcomes. However, traditional diagnostic tools, such as MRI and PET scans, are costly and less accessible. This study aims to develop an automated, cost-effective digital diagnostic approach using deep learning (DL) and computer-aided detection (CAD) methods for early AD identification and classification. Methods: The proposed framework utilizes pretrained convolutional neural networks (CNNs) for feature extraction, integrated with two classifiers: multi-class support vector machine (MSVM) and artificial neural network (ANN). A dataset categorized into four groups-non-demented, very mild demented, mild demented, and moderate demented-was employed for evaluation. To optimize the classification process, a texture-based algorithm was applied for feature reduction, enhancing computational efficiency and reducing processing time. Results: The system demonstrated high statistical performance, achieving an accuracy of 91%, precision of 95%, and recall of 90%. Among the initial set of twenty-two texture features, seven were identified as particularly effective in differentiating normal cases from mild AD stages, significantly streamlining the classification process. These results validate the robustness and efficacy of the proposed DL- based CAD system. Conclusions: This study presents a reliable and affordable solution for early AD detection and diagnosis. The proposed system outperforms existing state-of-theart models and offers a valuable tool for timely treatment planning. Future research should explore its application to larger, more diverse datasets and investigate integration with other imaging modalities, such as MRI, to further enhance diagnostic precision. (c) 2024 The Author(s). Published by Cell Physiol Biochem Press GmbH&Co. KG
引用
收藏
页码:739 / 755
页数:17
相关论文
共 50 条
  • [1] An Accurate and Lightweight Algorithm for Caged Chickens Detection based on Deep Learning
    Liu, Yu
    Zhou, Haibo
    Ni, Zhengshuai
    Jiang, Zhangjun
    Wang, Xin
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2024, 61 (02): : 403 - 415
  • [2] An MRI-based deep learning approach for accurate detection of Alzheimer's disease
    EL-Geneedy, Marwa
    Moustafa, Hossam El-Din
    Khalifa, Fahmi
    Khater, Hatem
    AbdElhalim, Eman
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 63 : 211 - 221
  • [3] An efficient rumor detection model based on deep learning and flower pollination algorithm
    Ahsan, Mohammad
    Sinha, Bam Bahadur
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (03) : 2691 - 2719
  • [4] Early Detection of Alzheimer's Disease: A Deep Learning Approach for Accurate Diagnosis
    Tima, Jiranuwat
    Wiratkasem, Chontee
    Chairuean, Worakarn
    Padongkit, Patcharida
    Pangkhiao, Kittamet
    Pikulkaew, Kornprom
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 253 - 260
  • [5] Accurate Onset Detection Algorithm Using Feature-Layer-Based Deep Learning Architecture
    Chen, Ping-Hung
    Ding, Jian-Jiun
    Huang, Jin-Yu
    Tseng, Tzu-Yun
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [6] Malware detection based on deep learning algorithm
    Ding Yuxin
    Zhu Siyi
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (02): : 461 - 472
  • [7] Malware detection based on deep learning algorithm
    Ding Yuxin
    Zhu Siyi
    Neural Computing and Applications, 2019, 31 : 461 - 472
  • [8] Efficient Alzheimer's disease detection using deep learning technique
    Sekhar, B. V. D. S.
    Jagadev, Alok Kumar
    SOFT COMPUTING, 2023, 27 (13) : 9143 - 9150
  • [9] Accurate and efficient vehicle detection framework based on SSD algorithm
    Zhao, Min
    Zhong, Yuan
    Sun, Dihua
    IET IMAGE PROCESSING, 2021, 15 (13) : 3094 - 3104
  • [10] MLDet: Towards efficient and accurate deep learning method for Marine Litter Detection
    Ma, Dongliang
    Wei, Jine
    Li, Ye
    Zhao, Fang
    Chen, Xi
    Hu, Yuchao
    Yu, Shanshan
    He, Tianhao
    Jin, Ruihe
    Li, Zhaozhao
    Liu, Min
    OCEAN & COASTAL MANAGEMENT, 2023, 243