On Ψω-factorizable groups

被引:0
|
作者
Zhang, Heng [1 ]
Xi, Wenfei [2 ]
Wu, Yaoqiang [1 ]
Li, Hongling [1 ]
机构
[1] Suqian Univ, Sch Sci & Arts, Suqian 223800, Peoples R China
[2] Nanjing Univ Finance & Econ, Sch Appl Math, Nanjing 210046, Peoples R China
基金
中国国家自然科学基金;
关键词
Psi omega-factorizable groups; G delta-uniformly continuous functions; Pseudo-tau-fine; M-factorizable groups;
D O I
10.1016/j.topol.2024.109129
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A topological group G is called Psi w-factorizable (resp. M-factorizable) if every continuous real-valued function on G admits a factorization via a continuous homomorphism onto a topological group H with psi ( H ) <= omega (resp. a first-countable group). The first purpose of this article is to discuss some characterizations of Psi w- factorizable groups. It is shown that a topological group G is Psi w-factorizable if and only if every continuous real-valued function on G is G s-uniformly continuous, if and only if for every cozero-set U of G , there exists a G s-subgroup N of G such that UN = U . Sufficient conditions on the Psi w-factorizable group G to be M-factorizable are that G is tau-fine and tau-steady for a cardinal tau . (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] The solvable radical of Sylow factorizable groups
    Kaplan, G
    Levy, D
    ARCHIV DER MATHEMATIK, 2005, 85 (06) : 490 - 496
  • [42] Hereditarily R-factorizable groups
    Tkachenko, Mikhail
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (08) : 1548 - 1557
  • [43] SOLVABILITY OF FACTORIZABLE GROUPS-II
    FINKEL, D
    LUNDGREN, JR
    JOURNAL OF ALGEBRA, 1979, 60 (01) : 43 - 50
  • [44] On M-factorizable topological groups
    Zhang, Heng
    Peng, Dekui
    He, Wei
    TOPOLOGY AND ITS APPLICATIONS, 2020, 274
  • [45] PROPERTIES OF MULTI-FACTORIZABLE GROUPS
    PETERSON, FG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A346 - A347
  • [46] THEOREM OF N ITO ON FACTORIZABLE GROUPS
    ARAD, Z
    CHILLAG, D
    ARCHIV DER MATHEMATIK, 1978, 30 (03) : 236 - 239
  • [47] The solvable radical of Sylow factorizable groups
    Gil Kaplan
    Dan Levy
    Archiv der Mathematik, 2005, 85 : 490 - 496
  • [48] NILPOTENT FACTORIZABLE FINITE-GROUPS
    MAIER, R
    ARCHIV DER MATHEMATIK, 1976, 27 (05) : 480 - 483
  • [49] The fineness index of topological groups and M-factorizable groups
    Zhang, Heng
    He, Wei
    Xi, Wenfei
    TOPOLOGY AND ITS APPLICATIONS, 2023, 328
  • [50] ON FINITE GROUPS FACTORIZABLE BY WEAKLY SUBNORMAL SUBGROUPS
    Trofimuk, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (06) : 1133 - 1139